
Sparsity and Nonnegativity in Least Squares

Problems and Matrix Factorizations

Public PhD Defense

Nicolas Nadisic

21 April 2022

Université de Mons, Belgium

1/73

Introduction

Our motivation

General motivation for data science: extract useful knowledge and

meaningful information from data.

High-level motivations of this thesis:

• Extract underlying structures in data

• Better leverage a priori knowledge, notably nonnegativity and

sparsity, to improve models

• Develop algorithms that are both guaranteed and computationally

tractable

2/73

Starting point: linear models

Focus of this thesis: linear models of the form

Ax ≈ b,

where

• x ∈ Rr is a signal or information vector,

• b ∈ Rm is the data vector, representing measures or observations,

• A ∈ Rm×r is a coeficient matrix, called dictionary, representing

features, atoms, or components.

3/73

Linear models

b

≈

A

×

x

4/73

One application — Hyperspectral imaging

b︸︷︷︸
spectral signature of

one pixel

Images from Bioucas Dias and Nicolas Gillis.

5/73

One application — Hyperspectral imaging

b︸︷︷︸
spectral signature of

one pixel

≈ A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

x(p)︸︷︷︸
abundance of p-th material

in one pixel

Images from Bioucas Dias and Nicolas Gillis.

5/73

Linear mixing model

6/73

Our starting point: Linear inverse problem

Given b and A, find x

b

≈

A

×

x

?

7/73

Least squares problem

How to recover x given A and b, in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ2-norm, ∥v∥22 =
∑

i v
2
i , leading to a least

squares problem

min
x

∥Ax − b∥22.

• In most cases, ill-posed problem.

• When the data is noisy, the solution x may not represent well the

reality.

8/73

Least squares problem

How to recover x given A and b, in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ2-norm, ∥v∥22 =
∑

i v
2
i , leading to a least

squares problem

min
x

∥Ax − b∥22.

• In most cases, ill-posed problem.

• When the data is noisy, the solution x may not represent well the

reality.

8/73

Least squares problem

How to recover x given A and b, in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ2-norm, ∥v∥22 =
∑

i v
2
i , leading to a least

squares problem

min
x

∥Ax − b∥22.

• In most cases, ill-posed problem.

• When the data is noisy, the solution x may not represent well the

reality.

8/73

Least squares problem

How to recover x given A and b, in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ2-norm, ∥v∥22 =
∑

i v
2
i , leading to a least

squares problem

min
x

∥Ax − b∥22.

• In most cases, ill-posed problem.

• When the data is noisy, the solution x may not represent well the

reality.

8/73

How to improve the model?

Leverage a priori knowledge or assumptions on the structure of the

solution.

b

≈

A

×

x

?

9/73

Assumption 1: nonnegativity

Nonnegativity of x

⇒ data comes from an additive combination of features

b

≈

A

×

x

≥ 0
≥ 0
≥ 0
≥ 0
≥ 0
≥ 0

10/73

Nonnegative least squares

• Nonnegative least squares (NNLS)

min
x

∥Ax − b∥22 s.t. x ≥ 0

• More interpretability

• Natural in many applications

11/73

Assumption 2: sparsity

Sparsity of x ⇒ few non-zero entries

⇒ data comes from a combination of few features

b

≈

A

×

x

= 0
> 0
> 0
= 0
> 0
= 0

12/73

How to enforce sparsity?

• A natural sparsity measure: ℓ0-“norm”

||x ||0 = |{i : xi ̸= 0}| (number of nonzero entries of x).

• With a ℓ0 constraint, k-sparse NNLS

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

• Intuitive formulation:

a data point is generated from at most k features

• Hard to solve: combinatorial problem with
(
r
k

)
possible supports (set

of nonzeros entries)

13/73

How to enforce sparsity?

• A natural sparsity measure: ℓ0-“norm”

||x ||0 = |{i : xi ̸= 0}| (number of nonzero entries of x).

• With a ℓ0 constraint, k-sparse NNLS

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

• Intuitive formulation:

a data point is generated from at most k features

• Hard to solve: combinatorial problem with
(
r
k

)
possible supports (set

of nonzeros entries)

13/73

How to enforce sparsity?

• A natural sparsity measure: ℓ0-“norm”

||x ||0 = |{i : xi ̸= 0}| (number of nonzero entries of x).

• With a ℓ0 constraint, k-sparse NNLS

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

• Intuitive formulation:

a data point is generated from at most k features

• Hard to solve: combinatorial problem with
(
r
k

)
possible supports (set

of nonzeros entries)

13/73

Generalization of NNLS: MNNLS

A generalization of NNLS with multiple columns:

Multiple Nonnegative Least Squares (MNNLS)

min
X≥0

∥B − AX∥2F ,

with B ∈ Rm×n, A ∈ Rm×r , and X ∈ Rr×n.

Can be divided in n independent NNLS subproblems

14/73

Multiple Nonnegative Least Squares (MNNLS)

B

≈

A

×

X

15/73

Application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

16/73

Generalization: Nonnegative matrix factorization

If A is also unknown?

Given B ∈ Rm×n
+ and r ∈ N, find A ∈ Rm×r

+ , and X ∈ Rr×n
+ ,

Nonnegative matrix factorization (NMF)

min
A≥0,X≥0

∥B − AX∥2F

17/73

Generalization: Nonnegative matrix factorization

If A is also unknown?

Given B ∈ Rm×n
+ and r ∈ N, find A ∈ Rm×r

+ , and X ∈ Rr×n
+ ,

Nonnegative matrix factorization (NMF)

min
A≥0,X≥0

∥B − AX∥2F

17/73

NMF Geometry (B ≈ AX)

Data points B(:, j)

18/73

NMF Geometry (B ≈ AX): cone / convex hull

Vertices A(:, p)

Data points B(:, j)

18/73

NMF Geometry (B ≈ AX): cone / convex hull

Grass

Rooftop Trees

Materials A(:, p)

Pixels B(:, j)

19/73

NMF −→ MNNLS −→ NNLS

• NMF:

min
A≥0,X≥0

∥B − AX∥2F

• Optimizing one factor while fixing the other is a multicolumn

nonnegative least square (MNNLS) subproblem

min
X≥0

∥B − AX∥2F ,

• that can be decomposed into n nonnegative least squares (NNLS)

subproblems

min
x≥0

∥Ax − b∥22,

where X (:, j), A, and B(:, j) correspond respectively to x , A, and b.

20/73

Another assumption: separability

For each vertex, there exist at least one data point equal to this vertex

⇔ pure-pixel assumption

B

≈

A

×

X

⇔ There exists an index set J with |J | = r such that B ≈ B(:,J)X

21/73

Overview of contributions

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J)

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF

22/73

Smoothed separable nonnegative

matrix factorization

Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J)

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF

23/73

Smoothed separable NMF

Chapter 2 of the thesis. Presented in the article:

NN, Nicolas Gillis, and Christophe Kervazo (2021). “Smoothed

separable nonnegative matrix factorization”. In: preprint

arXiv:2110.05528.

Why? Separable NMF is popular and powerful but algorithms do

not leverage the presence of multiple pure data points (only

one does so, and it has limitations)

What? Two smoothed separable NMF algorithms that outperform

the state of the art

24/73

Model 1: Separable NMF

• NMF is NP-hard in general.

• Under the separability assumption, it is solvable in polynomial time.

B

≈

A

×

X

Algorithms: we focus on two greedy algorithms

• VCA: Vertex Component Analysis (Nascimento et al. 2005)

• SPA: Successive Projection Algorithm (Araújo et al. 2001)
25/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

VCA — Animation

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

26/73

Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual vertices A(:, j)

27/73

Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual vertices A(:, j)

Vertices identified with SepNMF

27/73

Model 2: Proximal latent points (Bhattacharyya et al. 2020)

Interpretation: Each vertex has at least p data points close to it.

B

≈

A

×

X

28/73

Model 2: Proximal latent points (Bhattacharyya et al. 2020)

• Assumption is stronger than separability, but it allows more noise,

and is realistic in practice.

• The proposed Algorithm to Learn a Latent Simplex (ALLS) has

practical issues.

29/73

Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

30/73

Our contribution

• Smoothed variants of algorithms VCA and SPA that leverage the

proximal latent points assumption ⇒ SVCA and SSPA

• Aggregates p data points to find each vertex

• Best of both worlds

31/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

Smoothed VCA — Animation (p = 5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

32/73

With smoothed separable NMF

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual endmembers A(:, j)

Vertices identified with SepNMF

— with Smoothed SepNMF

33/73

Experiment: unmixing of hyperspectral image Urban

a VCA, error= 6.24%

b SVCA p=200, error= 5.24%

34/73

Conclusion

• Empirically, smoothed algorithm perform better than VCA, SPA,

and ALLS

• More robust to outliers

• More robust to noise

• Good way to handle spectral variability.

35/73

Exact sparse nonnegative least

squares

Exact sparse NNLS

Chapter 3 of the thesis. Presented in the articles:

NN, Arnaud Vandaele, Nicolas Gillis, and Jeremy E Cohen (2020).

“Exact sparse nonnegative least squares”. In: IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 5395–5399.

— (2021). “Exact biobjective k-sparse nonnegative least squares”.

In: 29th European Signal Processing Conference (EUSIPCO),

pp. 2079–2083.

36/73

Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J)

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF

37/73

First contribution: exact algorithm

k-sparse NNLS: min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

Intuitive formulation: each data point is a combination of at most k

components

Why? No dedicated exact algorithm

What? Branch-and-bound algorithm

38/73

k-sparse NNLS in a multi-column problem

B

≈

A

×

X

∥X (:, j)∥0 ≤ k for all j

39/73

Exact Sparse Nonnegative Least Squares

• k-sparse NNLS

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

is a combinatorial problem

• Reduces to find the best support of cardinality k

•
(
r
k

)
possible supports

Can we do better than brute-force?

40/73

Pruning the search space

How can we exploit the problem’s structure to prune safely the search

space?

• Branch-and-bound

• Idea: when adding constraints to a problem, the optimal solution

can only worsen (or stay the same)

• Our algorithm: arborescent1

1arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity

Constraints to be Enforced in NNLS Tasks

41/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5
X = [0 x2 x3 x4 x5] X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5
X = [0 x2 x3 x4 x5] X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5
X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5] X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3
X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]root node, unconstrainedk = r = 5
X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5] X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3
X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5]

Xbest

X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5]

Xbest

X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5]

Xbest

X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5]

err(X) > err(Xbest)

X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k = r = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5]

Xbest

X = [0 0 x3 x4 0] k = 2 → stop

X = [0 x2 0 x4 x5]

err(X) > err(Xbest)

X = [0 x2 x3 0 x5] ... k = 3

X = [x1 0 x3 x4 x5] ... k = 4

42/73

Comparison with brute force and generic MIP solvers

5 10 15 20

10−4

10−3

10−2

10−1

100

101

Sparsity target k

C
om

p
u
ti
n
g
ti
m
e
(s
)

CPLEX
Brute-force
Arborescent

43/73

Comparison with brute force and generic MIP solvers

0 10 20 30 40 50

10−4

10−3

10−2

10−1

100

Dimension r

C
om

p
u
ti
n
g
ti
m
e
(s
)

CPLEX
Brute-force
Arborescent

44/73

Second contribution: biobjective extension

Why? Constrained formulation is not always practical

• k can be difficult to estimate

• In a multicolumn problem, k can vary between columns

What? Biobjective extension of arborescent

Biobjective k-sparse NNLS:

min
x≥0

{∥Ax − b∥22, ∥x∥0}

45/73

Bi-objective formulation

min
x≥0

{
∥Ax − b∥22
∥x∥0

Equivalent to min
x≥0

∥b − Ax∥22 s.t. ∥x∥0 ≤ k for all k ∈ {0, . . . , r}

46/73

Pareto front

Example for r = 5

0
∥x∥00

∥A
x
−

b
∥2 2

1 2 3 4 r = 5

x = 0∥b∥22

x ∈ argminx≥0 ∥Ax − b∥22

47/73

How to solve the biobjective problem?

An extension of the existing branch-and-bound algorithm for k-sparse

NNLS

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

48/73

Sum-up

• We proposed arborescent, a branch-and-bound algorithm to solve

exactly the k-sparse NNLS problem.

• Faster than brute force and generic solver

• Biobjective extension

• Useful when k is hard to set

• Can be used as a subroutine in a larger framework (next chapter...)

49/73

Matrix-wise ℓ0-constrained

nonnegative least squares

Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J)

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF

50/73

Matrix-wise ℓ0-constrained NNLS

Chapter 4 of the thesis. Presented in the article:

NN, Jeremy E. Cohen, Arnaud Vandaele, and Nicolas Gillis (2022).

“Matrix-wise L0-constrained sparse nonnegative least squares”. In:

preprint arXiv:2011.11066.

Why? Column-wise sparsity is sometimes not practical, few works

handle matrix-wise sparsity (mostly heuristics, e.g. ℓ1-

relaxation)

What? Algorithmic framework with optimality guarantees under con-

ditions

51/73

A matrix-wise constraint

Matrix-wise q-sparse MNNLS

min
X≥0

∥B − AX∥22 s.t. ∥X∥0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm

52/73

A matrix-wise constraint

Matrix-wise q-sparse MNNLS

min
X≥0

∥B − AX∥22 s.t. ∥X∥0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm

52/73

Our contribution: a two-step algorithm

Algorithm Salmon2:

1. Generate a set of solutions for every column of X , with different

tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS

subproblems

min
X (:,j)≥0

{ ∥B(:, j)− AX (:, j)∥22 , ∥X (:, j)∥o }

• Solve with arborescent, or heuristic (homotopy, greedy algo)

• Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero

entries and the error is minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

2Salmon Applies ℓ0-constraints Matrix-wise On NNLS problems

53/73

Our contribution: a two-step algorithm

Algorithm Salmon2:

1. Generate a set of solutions for every column of X , with different

tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS

subproblems

min
X (:,j)≥0

{ ∥B(:, j)− AX (:, j)∥22 , ∥X (:, j)∥o }

• Solve with arborescent, or heuristic (homotopy, greedy algo)

• Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero

entries and the error is minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

2Salmon Applies ℓ0-constraints Matrix-wise On NNLS problems

53/73

Cost matrix C

• Each row = one sparsity level

• Each column = one column of the MNNLS problem

C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n

54/73

Illustration of Salmon — Step 1

B

≈

A

×

X

C

55/73

Illustration of Salmon — Step 1

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

55/73

Illustration of Salmon — Step 1

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

55/73

Illustration of Salmon — Step 1

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

55/73

Illustration of Salmon — Step 1

B

≈

A

×

X

. . .

C

55/73

Illustration of Salmon — Step 1

B

≈

A

×

X

C

55/73

Salmon — Step 2

Similar to an assignment problem

C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n

Given zi,j ∈ {0, 1} such that zi,j = 1 if and only if the jth column of X is

i-sparse,

min
z∈{0,1}r×n

∑
i,j

zi,jC (i , j)

such that
∑
i

zi,j = 1 for all j , and
∑
i,j

i zi,j ≤ q.

Solved with a dedicated greedy algorithm, fast but proved near-optimal

56/73

Salmon — Step 2

C
X

0

∥X∥0 = 0

57/73

Salmon — Step 2

C
X

∥X∥0 = 1

57/73

Salmon — Step 2

C
X

∥X∥0 = 2

57/73

Salmon — Step 2

C
X

∥X∥0 = 3

57/73

Salmon — Step 2

C
X

∥X∥0 = 5

57/73

Salmon — Step 2

C
X

∥X∥0 = 5

Iterate while ∥X∥0 < q

57/73

Salmon — Step 2

Final solution X , q-sparse matrix

58/73

Experiment: unmixing of hyperspectral image Jasper

59/73

Experiment: unmixing of hyperspectral image Jasper

NNLS (no sparse) Col-wise, k = 2

Salmon, q/n = 2 Salmon, q/n = 1.8 60/73

Conclusion

• We introduced a sparse MNNLS model with matrix-wise ℓ0-sparsity

constraint

• We developed a 2-step algorithm to tackle it

• Makes tractable some problems that are too big for standard NNLS

solvers

• Improves results, allows a finer parameter tuning

• Interesting where sparsity varies between columns

61/73

Sparse separable nonnegative

matrix factorization

Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J)

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF

62/73

Sparse separable nonnegative matrix factorization

Chapter 5 of the thesis. Presented in the article:

NN, Arnaud Vandaele, Jeremy E Cohen, and Nicolas Gillis (2020).

“Sparse separable nonnegative matrix factorization”. In: Joint

European Conference on Machine Learning and Knowledge Discovery

in Databases (ECMLPKDD), pp. 335–350.

Why? No work handles the underdetermined case with interior ver-

tices, nor leverages sparsity

What? New model and exact algorithm for separable NMF with spar-

sity constraints, identifiability and complexity proofs

63/73

Starting point — Separable NMF

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
Data points B(:, j)

Selected vertices A(:, j)
Unit simplex

64/73

A limitation of Separable NMF

What if one column of A is a combination of others columns of A?

Ex: multispectral unmixing with m < r

→ Interior vertex

Not identifiable by separable NMF, because it belongs to the convex hull

of the other vertices.

65/73

A limitation of Separable NMF

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

Data points B(:, j)
Exterior vertices
Interior vertex
Unit simplex

66/73

Combining separability and k-sparsity

Sparse separable NMF

B = B(:,J)X s.t. for all i , ∥X (:, i)∥0 ≤ k

Given B, find J and X .

67/73

Our approach for SSNMF

In a nutshell, 3 steps:

1. Identify exterior vertices with Separable NMF algorithm (SNPA)

2. Identify candidate interior vertices with k-sparse SNPA

3. Discard bad candidates, those that are k-sparse combinations of

other selected points (they cannot be vertices)

Our algorithm: Brassens3

3Brassens Relies on Assumptions of Separability and Sparsity for Elegant NMF Solving

68/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Brassens with sparsity k = 2

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

69/73

Sum-up

Sparse Separable NMF, a new model that combine constraints of

separability and k-sparsity:

• Can handle some cases that Separable NMF cannot handle, such as

interior vertices

• We proved it is NP-hard (unlike Sep NMF), but actually “not so

hard” for small r

• It is provably solved by our algorithm Brassens under mild

assumptions

Limitations:

• Brassens does not scale well

• Theoretical results limited to the noiseless case

70/73

Conclusion

Conclusion

Our contributions:

• Leverage more a priori knowledge to improve models

• Focus on ℓ0-“norm” constraints: more intuitive formulations for

sparse models

• Provide exact algorithms: guaranteed results but with

higher computing cost

71/73

Future lines of research

• A whole new class of smoothed separable NMF algorithms

• Better branch-and-bound algorithms

• Generalize our algorithms to other sparse optimization problems

(e.g. simultaneous sparse optimization)

• Enforce other discrete contraints (binary, integer, . . .) using

combinatorial techniques, such as branch-and-bound

• Study the sparsity assumption in other kinds of data and

applications: audio processing, text mining, chemometrics, . . .

72/73

Thanks!
Contact: nicolas.nadisic@umons.ac.be

Thesis, paper and code:

http://nicolasnadisic.xyz

=B A
X

mailto:nicolas.nadisic@umons.ac.be
http://nicolasnadisic.xyz

	Introduction
	Smoothed separable nonnegative matrix factorization
	Exact sparse nonnegative least squares
	Matrix-wise 0-constrained nonnegative least squares
	Sparse separable nonnegative matrix factorization
	Conclusion

