Sparsity and Nonnegativity in Least Squares Problems and Matrix Factorizations

Public PhD Defense

Nicolas Nadisic

21 April 2022

Université de Mons, Belgium

[Introduction](#page-1-0)

General motivation for data science: extract useful knowledge and meaningful information from data.

High-level motivations of this thesis:

- Extract underlying structures in data
- Better leverage a priori knowledge, notably nonnegativity and sparsity, to improve models
- Develop algorithms that are both guaranteed and computationally tractable

Focus of this thesis: linear models of the form

 $Ax \approx b$,

where

- $x \in \mathbb{R}^r$ is a signal or information vector,
- $b \in \mathbb{R}^m$ is the data vector, representing measures or observations,
- $A \in \mathbb{R}^{m \times r}$ is a coeficient matrix, called dictionary, representing features, atoms, or components.

b \approx A \times $\boldsymbol{\mathit{X}}$

One application — Hyperspectral imaging

b spectral signature of
one pixel

Images from Bioucas Dias and Nicolas Gillis.

One application — Hyperspectral imaging

Images from Bioucas Dias and Nicolas Gillis.

Given b and A , find x

How to recover x given A and b , in the presence of noise?

How to recover x given A and b , in the presence of noise? Choose a data fidelity measure.

How to recover x given A and b , in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ_2 -norm, $||v||_2^2 = \sum_i v_i^2$, leading to a least squares problem

 $\min_{x} \|Ax - b\|_2^2.$

How to recover x given A and b, in the presence of noise?

Choose a data fidelity measure.

Here we choose the squared ℓ_2 -norm, $||v||_2^2 = \sum_i v_i^2$, leading to a least squares problem

$$
\min_x \|Ax - b\|_2^2.
$$

- In most cases, ill-posed problem.
- When the data is noisy, the solution x may not represent well the reality.

How to improve the model?

Leverage a priori knowledge or assumptions on the structure of the solution.

Nonnegativity of x

 \Rightarrow data comes from an additive combination of features

• Nonnegative least squares (NNLS)

$$
\min_{x} \|Ax - b\|_2^2 \text{ s.t. } x \ge 0
$$

- More interpretability
- Natural in many applications

Assumption 2: sparsity

Sparsity of $x \Rightarrow$ few non-zero entries \Rightarrow data comes from a combination of few features

How to enforce sparsity?

• A natural sparsity measure: ℓ_0 - "norm"

 $||x||_0 = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).

- A natural sparsity measure: ℓ_0 "norm" $||x||_0 = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).
- With a ℓ_0 constraint, *k*-sparse NNLS

$$
\min_{x\geq 0} \|Ax - b\|_2^2 \text{ s.t. } \|x\|_0 \leq k
$$

- A natural sparsity measure: ℓ_0 "norm" $||x||_0 = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).
- With a ℓ_0 constraint, *k*-sparse NNLS

$$
\min_{x\geq 0} \|Ax - b\|_2^2 \text{ s.t. } \|x\|_0 \leq k
$$

• Intuitive formulation:

a data point is generated from at most k features

• Hard to solve: combinatorial problem with $\binom{r}{k}$ possible supports (set of nonzeros entries)

A generalization of NNLS with multiple columns:

Multiple Nonnegative Least Squares (MNNLS)

$$
\min_{X\geq 0} \|B - AX\|_F^2,
$$

with $B \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{m \times r}$, and $X \in \mathbb{R}^{r \times n}$.

Can be divided in n independent NNLS subproblems

Multiple Nonnegative Least Squares (MNNLS)

Application — Hyperspectral unmixing

Images from Bioucas Dias and Nicolas Gillis.

If A is also unknown?

If A is also unknown? Given $B \in \mathbb{R}^{m \times n}_+$ and $r \in \mathbb{N}$, find $A \in \mathbb{R}^{m \times r}_+$, and $X \in \mathbb{R}^{r \times n}_+$, Nonnegative matrix factorization (NMF) min $\min_{A \ge 0, X \ge 0} \|B - AX\|_F^2$

$$
17/73
$$

NMF Geometry $(B \approx AX)$

 \bigcirc Data points $B(:, j)$

NMF Geometry $(B \approx AX)$: cone / convex hull

NMF Geometry ($B \approx AX$): cone / convex hull

• NMF:

$$
\min_{A\geq 0, X\geq 0} \|B - AX\|_F^2
$$

• Optimizing one factor while fixing the other is a multicolumn nonnegative least square (MNNLS) subproblem

$$
\min_{X\geq 0} \|B - AX\|_F^2,
$$

 \bullet that can be decomposed into *n* nonnegative least squares (NNLS) subproblems

$$
\min_{x\geq 0} \|Ax - b\|_2^2,
$$

where $X(:, j)$, A, and $B(:, j)$ correspond respectively to x, A, and b.

For each vertex, there exist at least one data point equal to this vertex ⇔ pure-pixel assumption

 \Leftrightarrow There exists an index set $\mathcal J$ with $|\mathcal J| = r$ such that $B \approx B(:, \mathcal J)X$

Overview of contributions

[Smoothed separable nonnegative](#page-31-0) [matrix factorization](#page-31-0)

Chapter 2 of the thesis. Presented in the article:

- NN, Nicolas Gillis, and Christophe Kervazo (2021). "Smoothed separable nonnegative matrix factorization". In: preprint arXiv:2110.05528.
	- Why? Separable NMF is popular and powerful but algorithms do not leverage the presence of multiple pure data points (only one does so, and it has limitations)
	- What? Two smoothed separable NMF algorithms that outperform the state of the art

Model 1: Separable NMF

- NMF is NP-hard in general.
- Under the separability assumption, it is solvable in polynomial time.

Algorithms: we focus on two greedy algorithms

- VCA: Vertex Component Analysis (Nascimento et al. [2005\)](#page-0-0)
- SPA: Successive Projection Algorithm (Araújo et al. [2001\)](#page-0-0)

VCA — Animation

Issues of Separable NMF: outliers, extreme points

Issues of Separable NMF: outliers, extreme points

Interpretation: Each vertex has at least p data points close to it.

- Assumption is stronger than separability, but it allows more noise, and is realistic in practice.
- The proposed Algorithm to Learn a Latent Simplex (ALLS) has practical issues.

Hyperspectral unmixing

Images from Bioucas Dias and Nicolas Gillis.

- Smoothed variants of algorithms VCA and SPA that leverage the proximal latent points assumption \Rightarrow SVCA and SSPA
- Aggregates p data points to find each vertex
- Best of both worlds

With smoothed separable NMF

Experiment: unmixing of hyperspectral image Urban

b SVCA $p=200$, error= 5.24%

- Empirically, smoothed algorithm perform better than VCA, SPA, and ALLS
- More robust to outliers
- More robust to noise
- Good way to handle spectral variability.

[Exact sparse nonnegative least](#page-59-0) [squares](#page-59-0)

Chapter 3 of the thesis. Presented in the articles:

- NN, Arnaud Vandaele, Nicolas Gillis, and Jeremy E Cohen (2020). "Exact sparse nonnegative least squares". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5395–5399.
- \Box (2021). "Exact biobjective k-sparse nonnegative least squares". In: 29th European Signal Processing Conference (EUSIPCO), pp. 2079–2083.

k-sparse NNLS: min $\min_{x \geq 0} \|Ax - b\|_2^2$ s.t. $\|x\|_0 \leq k$ Intuitive formulation: each data point is a combination of at most k components

Why? No dedicated exact algorithm What? Branch-and-bound algorithm

k-sparse NNLS in a multi-column problem

X

 $||X(:,j)||_0 \leq k$ for all j

 \bullet *k*-sparse NNLS

$$
\min_{x\geq 0} \|Ax - b\|_2^2 \text{ s.t. } \|x\|_0 \leq k
$$

is a combinatorial problem

- Reduces to find the best support of cardinality k
- $\binom{r}{k}$ possible supports

Can we do better than brute-force?

How can we exploit the problem's structure to prune safely the search space?

- Branch-and-bound
- Idea: when adding constraints to a problem, the optimal solution can only worsen (or stay the same)
- Our algorithm: $arborescent¹$

¹arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks

root node, unconstrained

$$
\left(\mathbf{X} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}\right) k = r = 5
$$

root node, unconstrained

$$
\left(\mathbf{X} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}\right) k = r = 5
$$

Comparison with brute force and generic MIP solvers

Comparison with brute force and generic MIP solvers

Why? Constrained formulation is not always practical

- \bullet k can be difficult to estimate
- \bullet In a multicolumn problem, k can vary between columns

What? Biobjective extension of arborescent

Biobjective k-sparse NNLS:

$$
\min_{x\geq 0} \{||Ax - b||_2^2, ||x||_0\}
$$

$$
\min_{x \geq 0} \left\{ \frac{\|Ax - b\|_2^2}{\|x\|_0} \right\}
$$

Equivalent to min min $||b - Ax||_2^2$ s.t. $||x||_0 \le k$ for all $k \in \{0, ..., r\}$

Pareto front

An extension of the existing branch-and-bound algorithm for *k*-sparse NNLS

- We proposed arborescent, a branch-and-bound algorithm to solve exactly the k-sparse NNLS problem.
- Faster than brute force and generic solver
- Biobjective extension
	- Useful when k is hard to set
	- Can be used as a subroutine in a larger framework (next chapter...)

Matrix-wise ℓ_0 [-constrained](#page-87-0) [nonnegative least squares](#page-87-0)

Chapter 4 of the thesis. Presented in the article:

NN, Jeremy E. Cohen, Arnaud Vandaele, and Nicolas Gillis (2022). "Matrix-wise L0-constrained sparse nonnegative least squares". In: preprint arXiv:2011.11066.

- Why? Column-wise sparsity is sometimes not practical, few works handle matrix-wise sparsity (mostly heuristics, e.g. ℓ_1 relaxation)
- What? Algorithmic framework with optimality guarantees under conditions

Matrix-wise q-sparse MNNLS

$$
\min_{X \geq 0} \|B - AX\|_2^2 \text{ s.t. } \|X\|_0 \leq q
$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

Matrix-wise q-sparse MNNLS

$$
\min_{X \geq 0} \|B - AX\|_2^2 \text{ s.t. } \|X\|_0 \leq q
$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

How to solve it?

- With a k-sparse NNLS methods, by vectorizing the problem \Rightarrow leads to a huge NNLS problem, too expensive to solve
- Our contribution: dedicated algorithm

Algorithm Salmon²:

- 1. Generate a set of solutions for every column of X , with different tradeoffs between reconstruction error and sparsity
	- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min_{X(:,j) \geq 0} \{ \quad ||B(:,j) - AX(:,j)||_2^2 \quad , \quad ||X(:,j)||_o \quad \}
$$

- Solve with arborescent, or heuristic (homotopy, greedy algo)
- Build a cost matrix C

²Salmon Applies ℓ_0 -constraints Matrix-wise On NNLS problems

Algorithm Salmon²:

- 1. Generate a set of solutions for every column of X , with different tradeoffs between reconstruction error and sparsity
	- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min_{X(:,j) \geq 0} \{ \quad ||B(:,j) - AX(:,j)||_2^2 \quad , \quad ||X(:,j)||_o \quad \}
$$

- Solve with arborescent, or heuristic (homotopy, greedy algo)
- Build a cost matrix C
- 2. Select one solution per column such that in total X has q nonzero entries and the error is minimized \Rightarrow assignment-like problem
	- Dedicated greedy algorithm proved near-optimal

²Salmon Applies ℓ_0 -constraints Matrix-wise On NNLS problems

- \bullet Each row $=$ one sparsity level
- \bullet Each column $=$ one column of the MNNLS problem

$$
\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}
$$

55/73

Salmon — Step 2

Similar to an assignment problem

$$
\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}
$$

Given $z_{i,j} \in \{0,1\}$ such that $z_{i,j} = 1$ if and only if the *j*th column of X is i-sparse,

$$
\min_{z \in \{0,1\}^{r \times n}} \sum_{i,j} z_{i,j} C(i,j)
$$
\nsuch that

\n
$$
\sum_{i} z_{i,j} = 1 \text{ for all } j, \text{ and } \sum_{i,j} i z_{i,j} \leq q.
$$

Solved with a dedicated greedy algorithm, fast but proved near-optimal

$$
|\lambda\|_0 = 2
$$

Iterate while $||X||_0 < q$

Final solution X , q-sparse matrix

Experiment: unmixing of hyperspectral image Jasper

Experiment: unmixing of hyperspectral image Jasper

NNLS (no sparse) Col-wise, $k = 2$

Salmon, $q/n = 2$ Salmon, $q/n = 1.8$ 60/73

- We introduced a sparse MNNLS model with matrix-wise ℓ_0 -sparsity constraint
- We developed a 2-step algorithm to tackle it
- Makes tractable some problems that are too big for standard NNLS solvers
- Improves results, allows a finer parameter tuning
- Interesting where sparsity varies between columns

[Sparse separable nonnegative](#page-112-0) [matrix factorization](#page-112-0)

Chapter 5 of the thesis. Presented in the article:

- F NN, Arnaud Vandaele, Jeremy E Cohen, and Nicolas Gillis (2020). "Sparse separable nonnegative matrix factorization". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECMLPKDD), pp. 335–350.
	- Why? No work handles the underdetermined case with interior vertices, nor leverages sparsity
	- What? New model and exact algorithm for separable NMF with sparsity constraints, identifiability and complexity proofs

Starting point — Separable NMF

64/73

What if one column of A is a combination of others columns of A?

Ex: multispectral unmixing with $m < r$

\rightarrow Interior vertex

Not identifiable by separable NMF, because it belongs to the convex hull of the other vertices.

A limitation of Separable NMF

Sparse separable NMF

 $B = B(:,\mathcal{J})X$ s.t. for all $i, ||X(:,i)||_0 \leq k$

Given B, find J and X.

In a nutshell, 3 steps:

- 1. Identify exterior vertices with Separable NMF algorithm (SNPA)
- 2. Identify candidate interior vertices with k-sparse SNPA
- 3. Discard bad candidates, those that are k-sparse combinations of other selected points (they cannot be vertices)

Our algorithm: Brassens³

³Brassens Relies on Assumptions of Separability and Sparsity for Elegant NMF Solving

Sparse Separable NMF, a new model that combine constraints of separability and k -sparsity:

- Can handle some cases that Separable NMF cannot handle, such as interior vertices
- We proved it is NP-hard (unlike Sep NMF), but actually "not so hard" for small r
- It is provably solved by our algorithm Brassens under mild assumptions

Limitations:

- Brassens does not scale well
- Theoretical results limited to the noiseless case

[Conclusion](#page-128-0)

Our contributions:

- Leverage more a priori knowledge to improve models
- Focus on ℓ_0 -"norm" constraints: more intuitive formulations for sparse models
- Provide exact algorithms: guaranteed results but with higher computing cost
- A whole new class of smoothed separable NMF algorithms
- Better branch-and-bound algorithms
- Generalize our algorithms to other sparse optimization problems (e.g. simultaneous sparse optimization)
- Enforce other discrete contraints (binary, integer, ...) using combinatorial techniques, such as branch-and-bound
- Study the sparsity assumption in other kinds of data and applications: audio processing, text mining, chemometrics, . . .

Thanks!

Contact: nicolas.nadisic@umons.ac.be

Thesis, paper and code: <http://nicolasnadisic.xyz>

