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Université de Mons, Belgium

1/42



Outline

1. Introduction

2. Smoothed separable nonnegative matrix factorization

3. Exact sparse nonnegative least squares

4. Matrix-wise ℓ0-constrained nonnegative least squares

5. Sparse separable nonnegative matrix factorization

6. Conclusion

2/42



Introduction



Our motivation

General motivation for data science: extract useful knowledge and

meaningful information from data.

High-level motivations of this thesis:

• Extract underlying structures in data

• Better leverage a priori knowledge, notably nonnegativity and

sparsity, to improve models

• Develop algorithms that are both guaranteed and computationally

tractable
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Starting point: Nonnegative matrix factorization

Given B ∈ Rm×n
+ and r ∈ N, find A ∈ Rm×r

+ , and X ∈ Rr×n
+ ,

min
A≥0,X≥0

∥B − AX∥2F

Why nonnegativity?

• More interpretable factors (part-based representation)

• Naturally favors sparsity

• Is natural in many applications (image processing, hyperspectral

unmixing, text mining, . . . )
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One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.
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NMF Geometry (B ≈ AX )

Data points B(:, j)
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NMF Geometry (B ≈ AX ): cone / convex hull

Vertices A(:, p)

Data points B(:, j)
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Nonnegative least squares

NMF: minA≥0,X≥0 ∥B − AX∥2F

• Optimizing one factor while fixing the other is a multicolumn

nonnegative least squares (MNNLS) problem

min
X≥0

∥B − AX∥2F ,

• that can be decomposed in n nonnegative least squares (NNLS)

subproblems

min
x≥0

∥Ax − b∥22,

where X (:, j), A, and B(:, j) correspond respectively to x , A, and b.
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Overview of contributions

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J )

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF
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Smoothed separable nonnegative

matrix factorization



Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J )

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF
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Smoothed separable NMF

Chapter 2 of the thesis. Presented in the article:

NN, Nicolas Gillis, and Christophe Kervazo (2021). “Smoothed

separable nonnegative matrix factorization”. In: preprint

arXiv:2110.05528.

Why? Separable NMF is popular and powerful but algorithms do

not leverage the presence of multiple pure data points (only

one does so, and it has limitations)

What? Two smoothed separable NMF algorithms that outperform

the state of the art
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Model 1: Separable NMF

• NMF is NP-hard in general.

• Under the separability assumption, it is solvable in polynomial time.

Separability assumption

There exists an index set J with |J | = r such that

B = B(:,J )X + N

(where N is bounded noise)

Interpretation: for each vertex, there exist at least one data point equal

to this vertex ⇔ pure-pixel assumption

Algorithms: we focus on two greedy algorithms

• VCA: Vertex Component Analysis (Nascimento et al. 2005)

• SPA: Successive Projection Algorithm (Araújo et al. 2001)

11/42



Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual vertices A(:, j)
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Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual vertices A(:, j)

Vertices identified with SepNMF
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Model 2: Proximal latent points (Bhattacharyya et al. 2020)

Interpretation: Each vertex has at least p data points close to it.

• Assumption is stronger than separability, but it allows more noise,

and is realistic in practice.

• The proposed Algorithm to Learn a Latent Simplex (ALLS) has

practical issues.
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Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.
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Our contribution

• Smoothed variants of algorithms VCA and SPA that leverage the

proximal latent points assumption ⇒ SVCA and SSPA

• Aggregates p data points to find each vertex

• Empirically better than VCA, SPA, and ALLS
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With smoothed separable NMF

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)

Actual endmembers A(:, j)

Vertices identified with SepNMF

— with Smoothed SepNMF
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Exact sparse nonnegative least

squares



Exact sparse NNLS

Chapter 3 of the thesis. Presented in the articles:

NN, Arnaud Vandaele, Nicolas Gillis, and Jeremy E Cohen (2020).

“Exact sparse nonnegative least squares”. In: IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 5395–5399.

— (2021). “Exact biobjective k-sparse nonnegative least squares”.

In: 29th European Signal Processing Conference (EUSIPCO),

pp. 2079–2083.

17/42



Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J )

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF
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First contribution: exact algorithm

k-sparse NNLS: min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

Intuitive formulation: each data point is a combination of at most k

components

Why? No dedicated exact algorithm

What? Branch-and-bound algorithm
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Exact Sparse Nonnegative Least Squares

• k-sparse NNLS

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

is a combinatorial problem

• Reduces to find the best support of cardinality k

•
(
r
k

)
possible supports

Can we do better than brute-force?
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Pruning the search space

How can we exploit the problem’s structure to prune safely the search

space?

• Branch-and-bound

• Idea: when adding constraints to a problem, the optimal solution

can only worsen (or stay the same)

• Our algorithm: arborescent

21/42



Illustration of arborescent, r = 5 and k = 2

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ n = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k′ ≤ 3

X = [x1 0 x3 x4 x5] ... k′ ≤ 4
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Comparison with generic MIP solvers

(I forgot to include in the thesis: this will be fixed)

Running time on synthetic data sets when k varies
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Second contribution: biobjective extension

Why? Constrained formulation is not always practical

• k can be difficult to estimate

• In a multicolumn problem, k can vary between columns

What? Biobjective extension of arborescent

Biobjective k-sparse NNLS:

min
x≥0

{∥Ax − b∥22, ∥x∥0}
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Bi-objective formulation

min
x≥0

{
∥Ax − b∥22
∥x∥0

Equivalent to min
x≥0

∥b − Ax∥22 s.t. ∥x∥0 ≤ k for all k ∈ {0, . . . , r}
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Pareto front

Example for r = 5

0
∥x∥00

∥A
x
−

b
∥2 2

1 2 3 4 r = 5

x = 0∥b∥22

x ∈ argminx≥0 ∥Ax − b∥22
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How to solve the biobjective problem?

An extension of the existing branch-and-bound algorithm for k-sparse

NNLS

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ n = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k′ ≤ 3

X = [x1 0 x3 x4 x5] ... k′ ≤ 4
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Sum-up

• We proposed arborescent, a branch-and-bound algorithm to solve

exactly the k-sparse NNLS problem.

• It works in very general settings (ill-conditioned or noisy data), when

traditional approaches fail.

• At the cost of higher computation time

• Biobjective extension

• Useful when k is hard to set

• Can be used as a subroutine in a larger framework (next chapter...)
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Matrix-wise ℓ0-constrained

nonnegative least squares



Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J )

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF
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Matrix-wise ℓ0-constrained NNLS

Chapter 4 of the thesis. Presented in the article:

NN, Jeremy E. Cohen, Arnaud Vandaele, and Nicolas Gillis (2022).

“Matrix-wise L0-constrained sparse nonnegative least squares”. In:

preprint arXiv:2011.11066.

Why? Column-wise sparsity is sometimes not practical, few works

handle matrix-wise sparsity (mostly heuristics, e.g. ℓ1-

relaxation)

What? Algorithmic framework with optimality guarantees under con-

ditions
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A matrix-wise constraint

Matrix-wise q-sparse MNNLS

min
H≥0

∥B − AX∥22 s.t. ∥X∥0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm
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Matrix-wise q-sparse MNNLS
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Our contribution: a two-step algorithm

Algorithm Salmon:

1. Generate a set of solutions for every column of X , with different

tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS

subproblems

min
X (:,j)≥0

{ ∥B(:, j)− AX (:, j)∥22 , ∥X (:, j)∥o }

• Solve with arborescent, or heuristic (homotopy, greedy algo)

2. Select one solution per column such that in total X has q nonzero

entries and the error is minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

• Improves results, allows a finer parameter tuning

• Interesting where sparsity varies between columns
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Sparse separable nonnegative

matrix factorization



Overview

Nonnegative Matrix Factorization

min
A≥0,X≥0

∥B − AX∥2F

Separable NMF, estimate A

under separability A = B(:,J )

Sparse MNNLS, estimate X

with A fixed,

min
X≥0

∥B − AX∥2F s.t. X is sparse

Chapter 3:

Column-wise sparsity

∥X (:, j)∥0 ≤ k for all j

Chapter 3:

Biobjective sparse NNLS

min
x≥0

{∥Ax − b∥22, ∥x∥0}

Chapter 4: Matrix-wise

sparsity ∥X∥0 ≤ q

Chapter 5: Sparse

separable NMF

Chapter 2: Smoothed

separable NMF
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Sparse separable nonnegative matrix factorization

Chapter 5 of the thesis. Presented in the article:

NN, Arnaud Vandaele, Jeremy E Cohen, and Nicolas Gillis (2020).

“Sparse separable nonnegative matrix factorization”. In: Joint

European Conference on Machine Learning and Knowledge Discovery

in Databases (ECMLPKDD), pp. 335–350.

Why? No work handles the underdetermined case with interior ver-

tices, nor leverages sparsity

What? New model and exact algorithm for separable NMF with spar-

sity constraints, identifiability and complexity proofs
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Starting point — Separable NMF

0
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0.4
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1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
Data points B(:, j)

Selected vertices A(:, j)
Unit simplex
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A limitation of Separable NMF

What if one column of A is a combination of others columns of A?

Ex: multispectral unmixing with m < r

→ Interior vertex

Not identifiable by separable NMF, because it belongs to the convex hull

of the other vertices.
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A limitation of Separable NMF
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Combining separability and k-sparsity

Sparse separable NMF

B = B(:,J )X s.t. for all i , ∥X (:, i)∥0 ≤ k

Given B, find J and X .
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Sum-up

Sparse Separable NMF, a new model that combine constraints of

separability and k-sparsity:

• Can handle some cases that Separable NMF cannot handle, such as

interior vertices

• We proved it is NP-hard (unlike Sep NMF), but actually “not so

hard” for small r

• It is provably solved by our algorithm Brassens under mild

assumptions

Limitations:

• Brassens does not scale well

• Theoretical results limited to the noiseless case
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Conclusion



Conclusion

Our contributions:

• Leverage more a priori knowledge to improve models

• Focus on ℓ0-norm constraints: more intuitive formulations for sparse

models

• Provide guaranteed algorithms: better results at the cost of higher

computing cost

40/42



Future lines of research

• A whole new class of smoothed separable NMF algorithms

• Better branch-and-bound algorithms

• Generalize our algorithms to other sparse optimization problems

(e.g. simultaneous sparse optimization)

• Enforce other discrete contraints (binary, integer, . . . ) using

combinatorial techniques, such as branch-and-bound

• Study the sparsity assumption in other kinds of data and

applications: audio processing, text mining, chemometrics, . . .
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Thanks!
Contact: nicolas.nadisic@umons.ac.be

Website: http://nicolasnadisic.xyz
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