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Nonnegative Matrix Factorization (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data.

Given a data matrix M ∈ Rm×n
+ and a rank r � min(m, n), find

W ∈ Rm×r
+ and H ∈ Rr×n

+ such that M ≈WH.

In optimization terms, standard NMF is equivalent to:

min
W≥0,H≥0

‖M −WH‖2
F
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Nonnegative Matrix Factorization (NMF)

Why nonnegativity?

• More interpretable factors (part-based representation)

• Naturally favors sparsity

• Makes sense in many applications (image processing, hyperspectral

unmixing, text mining, . . . )
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NMF Geometry (M ≈ WH)

Data points M(:, j)
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NMF Geometry (M ≈ WH)

Vertices W (:, p)

Data points M(:, j)
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Application – hyperspectral unmixing

M(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

W (:, p)︸ ︷︷ ︸
spectral signature of

p-th material

H(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Image from Nicolas Gillis.
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Application – hyperspectral unmixing

Grass

Rooftop Trees

Materials W (:, p)

Pixels M(:, j)
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Starting point 1/2 – Separable NMF

• NMF is NP-hard [Vavasis, 2010].

• Under the separability assumption, it’s solvable in polynomial time

[Arora et al., 2012].
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Starting point 1/2 – Separable NMF

Separability:

• The vertices are selected among the data points

• In hyperspectral unmixing, equivalent to Pure-pixel assumption

Standard NMF model

Separable NMF

M = WH

M = M(:,J )H
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Separable NMF – Geometry
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Starting point 2/2 — k-Sparse NMF

M = WH s.t. H is column-wise k-sparse (for all i , ‖H(:, i)‖0 ≤ k)

• Motivation → better interpretability

• Motivation → improve results using prior sparsity knowledge

• Ex: a pixel expressed as a combination of at most k materials
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k-Sparse NMF – Geometry with r = 4 and k = 2
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Sum-up of our work

What?

Why?

How?

a

Combine two models, Separable NMF and k-Sparse NMF

Underdetermined blind source separation

New algo based on SNPA and an exact k-Sparse NNLS solver

(provably correct, and works in “real-life”)

(End of introduction)
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Algorithm for Separable NMF – SNPA

SNPA = Successive Nonnegative Projection Algorithm [Gillis, 2014]

• Start with empty W , and residual R = M

• Alternate between

• Greedy selection of one column of R to be added to W

• Projection of R on the convex hull of the origin and columns of W

• Stop when reconstruction error = 0 (or < ε)

13/35



SNPA
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SNPA
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SNPA

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

14/35



SNPA
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SNPA
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Limitations of Separable NMF

What if one column of W is a combination of others columns of W ?

→ Interior vertex
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Limitations of Separable NMF
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Limitations of Separable NMF

SNPA is unable to handle this case, the interior vertex is not identifiable.

However, if columns of H are sparse (a data point is a combination of

only k < r vertices), this interior vertex may be identifiable.
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Sparse Separable NMF

Standard NMF model

Separable NMF

SSNMF

M = WH

M = M(:,J )H

M = M(:,J )H s.t. for all i , ‖H(:, i)‖0 ≤ k
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k-Sparse NMF

k-Sparse NMF is combinatorial (⇔ find the pattern of nonzero entries).(
r
k

)
possible combinations.

Previous work: a branch-and-bound algorithm for Exact k-Sparse NNLS

[Nadisic et al., 2020].

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ n = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k′ ≤ 3

X = [x1 0 x3 x4 x5] ... k′ ≤ 4
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Our approach for SSNMF

Replace the projection step of SNPA, from projection on convex hull to

projection on k-sparse hull, done with our BnB solver ⇒ kSSNPA.

kSSNPA

• Identifies all interior vertices

• May also identify wrong vertices (explanation to come!)

⇒ kSSNPA can be seen as a screening technique to reduce the number

of points to check.
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Our approach for SSNMF

In a nutshell, 3 steps:

1. Identify exterior vertices with SNPA

2. Identify candidate interior vertices with kSSNPA

3. Discard bad candidates, those that are k-sparse combinations of

other selected points (they cannot be vertices)

Our algorithm: BRASSENS Relies on Assumptions of Sparsity and

Separability for Elegant NMF Solving.
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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BRASSENS with sparsity k = 2
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Complexity

• As opposed to Sep NMF, SSNMF is NP-hard (Arnaud proved it, see

the paper)

• Hardness comes from the k-sparse projection

• Not too bad when r is small, with our BnB solver
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Correctness

Assumption 1 No column of W is a nonnegative linear combination of k

other columns of W.

⇒ necessary condition for recovery by BRASSENS

Assumption 2 No column of W is a nonnegative linear combination of k

other columns of M.

⇒ sufficient condition for recovery by BRASSENS

If data points are k-sparse and generated at random, Assumption 2 is

always true, so Assumption 1 becomes sufficient.

24/35



Related work

Only one similar work: [Sun and Xin, 2011]

• Handles only one interior vertex

• Non-optimal bruteforce-like method
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Experiments

• Experiments of synthetic datasets with interior points

• Experiment on underdetermined multispectral unmixing (Urban

image, 309× 309 pixels, limited to m = 3 spectral bands, and we

search for r = 5 materials)

• No other algorithm can tackle SSNMF, so comparisons are limited
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XP Synthetic 1: number of data points grows
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XP Synthetic 2: dimensions grow

m n r k Number of candidates Run time in seconds

3 25 5 2 5.5 0.26

4 30 6 3 8.5 3.30

5 35 7 4 9.5 38.71

6 40 8 5 13 395.88

Conclusion from experiments:

• kSSNPA is efficient to select few candidates

• Still, BRASSENS does not scale well :(
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XP on 3-bands Urban dataset with r = 5

SNPA

BRASSENS (finds 1 interior point)
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XP on 3-bands Urban dataset with r = 5

Interpretation

Image Materials extracted by SNPA Materials extracted by BRASSENS

1 Grass + trees + roof tops Grass + trees

2 Roof tops 1 Roof tops 1

3 Dirt + road + roof tops Road

4 Dirt + grass Roof tops 1 and 2 + road

5 Roof tops 1 + dirt + road Dirt + grass
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Future work

• Theoretical analysis of robustness to noise

• New real-life applications
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Take-home messages

Sparse Separable NMF:

• Combine constraints of separability and k-sparsity

• A new way to regularize NMF

• Can handle some cases that Separable NMF cannot

• Underdetermined case

• Interior vertices

• Is NP-hard (unlike Sep NMF), but actually “not so hard” for small r

• Is provably solved by our approach

• Our solution does not scale well
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Contact: nicolas.nadisic@umons.ac.be

Code and exp.: https://gitlab.com/nnadisic/ssnmf

Slides and paper: http://nicolasnadisic.xyz
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