Sparse Separable Nonnegative Matrix Factorization

<u>Nicolas Nadisic</u>, Arnaud Vandaele, Jeremy Cohen, Nicolas Gillis Presented in ECML-PKDD 2020

Université de Mons, Belgium

NMF is a linear dimensionality reduction technique for nonnegative data.

Given a data matrix $M \in \mathbb{R}^{m \times n}_+$ and a rank $r \ll \min(m, n)$, find $W \in \mathbb{R}^{m \times r}_+$ and $H \in \mathbb{R}^{r \times n}_+$ such that $M \approx WH$.

In optimization terms, standard NMF is equivalent to:

 $\min_{W\geq 0, H\geq 0} \|M - WH\|_F^2$

Why nonnegativity?

- More interpretable factors (part-based representation)
- Naturally favors sparsity
- Makes sense in many applications (image processing, hyperspectral unmixing, text mining, ...)

NMF Geometry ($M \approx WH$)

• Data points M(:,j)

NMF Geometry ($M \approx WH$ **)**

Application – hyperspectral unmixing

Image from Nicolas Gillis.

Application – hyperspectral unmixing

- NMF is NP-hard [Vavasis, 2010].
- Under the separability assumption, it's solvable in polynomial time [Arora et al., 2012].

Separability:

- The vertices are selected among the data points
- In hyperspectral unmixing, equivalent to Pure-pixel assumption

Standard NMF modelM = WHSeparable NMF $M = M(:, \mathcal{J})H$

Separable NMF – Geometry

- M = WH s.t. *H* is column-wise *k*-sparse (for all *i*, $||H(:,i)||_0 \le k$)
 - $\bullet \ \ \mathsf{Motivation} \to \mathsf{better} \ \mathsf{interpretability}$
 - improve results using prior sparsity knowledge
 - Ex: a pixel expressed as a combination of at most k materials

k-Sparse NMF – Geometry with r = 4 and k = 2

11/35

- What? Combine two models, Separable NMF and k-Sparse NMF
- Why? Underdetermined blind source separation
- How? New algo based on SNPA and an exact k-Sparse NNLS solver (provably correct, and works in "real-life")

(End of introduction)

SNPA = Successive Nonnegative Projection Algorithm [Gillis, 2014]

- Start with empty W, and residual R = M
- Alternate between
 - Greedy selection of one column of R to be added to W
 - Projection of R on the convex hull of the origin and columns of W
- Stop when reconstruction error = 0 (or $< \epsilon$)

What if one column of W is a combination of others columns of W? \rightarrow Interior vertex

Limitations of Separable NMF

SNPA is unable to handle this case, the interior vertex is not identifiable. However, if columns of H are sparse (a data point is a combination of only k < r vertices), this interior vertex may be identifiable.

k-Sparse NMF is combinatorial (\Leftrightarrow find the pattern of nonzero entries). $\binom{r}{k}$ possible combinations.

Previous work: a branch-and-bound algorithm for Exact k-Sparse NNLS [Nadisic et al., 2020].

Replace the projection step of SNPA, from projection on convex hull to projection on *k*-sparse hull, done with our BnB solver \Rightarrow kSSNPA.

kSSNPA

- Identifies all interior vertices
- May also identify wrong vertices (explanation to come!)

 \Rightarrow kSSNPA can be seen as a screening technique to reduce the number of points to check.

In a nutshell, 3 steps:

- 1. Identify exterior vertices with SNPA
- 2. Identify candidate interior vertices with kSSNPA
- 3. Discard bad candidates, those that are *k*-sparse combinations of other selected points (they cannot be vertices)

Our algorithm: BRASSENS Relies on Assumptions of Sparsity and Separability for Elegant NMF Solving.

22/35

22/35

- As opposed to Sep NMF, SSNMF is NP-hard (Arnaud proved it, see the paper)
- Hardness comes from the *k*-sparse projection
- Not too bad when r is small, with our BnB solver

Assumption 1 No column of W is a nonnegative linear combination of k other columns of W.

 \Rightarrow necessary condition for recovery by BRASSENS

Assumption 2 No column of W is a nonnegative linear combination of k other columns of M.

 \Rightarrow sufficient condition for recovery by BRASSENS

If data points are k-sparse and generated at random, **Assumption 2** is always true, so **Assumption 1** becomes sufficient.

Only one similar work: [Sun and Xin, 2011]

- Handles only one interior vertex
- Non-optimal bruteforce-like method

- Experiments of synthetic datasets with interior points
- Experiment on underdetermined multispectral unmixing (Urban image, 309×309 pixels, limited to m = 3 spectral bands, and we search for r = 5 materials)
- No other algorithm can tackle SSNMF, so comparisons are limited

XP Synthetic 1: number of data points grows

27/35

m	n	r	k	Number of candidates	Run time in seconds
3	25	5	2	5.5	0.26
4	30	6	3	8.5	3.30
5	35	7	4	9.5	38.71
6	40	8	5	13	395.88

Conclusion from experiments:

- kSSNPA is efficient to select few candidates
- Still, BRASSENS does not scale well :(

XP on 3-bands Urban dataset with r = 5

SNPA

BRASSENS (finds 1 interior point)

Interpretation

Image	Materials extracted by SNPA	Materials extracted by BRASSENS
1	Grass + trees + roof tops	Grass + trees
2	Roof tops 1	Roof tops 1
3	Dirt + road + roof tops	Road
4	Dirt+grass	Roof tops 1 and $2 + road$
5	Roof tops $1 + dirt + road$	Dirt + grass

- Theoretical analysis of robustness to noise
- New real-life applications

Sparse Separable NMF:

- Combine constraints of separability and *k*-sparsity
- A new way to regularize NMF
- Can handle some cases that Separable NMF cannot
 - Underdetermined case
 - Interior vertices
- Is NP-hard (unlike Sep NMF), but actually "not so hard" for small r
- Is provably solved by our approach
- Our solution does not scale well

	Ē

Arora, S., Ge, R., Kannan, R., and Moitra, A. (2012). **Computing a nonnegative matrix factorization – provably.** STOC '12.

Gillis, N. (2014).

Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation.

SIAM Journal on Imaging Sciences, 7(2):1420–1450.

Nadisic, N., Vandaele, A., Gillis, N., and Cohen, J. E. (2020). Exact Sparse Nonnegative Least Squares. In *ICASSP 2020*, pages 5395 – 5399.

Sun, Y. and Xin, J. (2011).

Underdetermined Sparse Blind Source Separation of Nonnegative and Partially Overlapped Data.

SIAM Journal on Scientific Computing, 33(4):2063–2094.

Vavasis, S. A. (2010).

On the Complexity of Nonnegative Matrix Factorization. SIAM Journal on Optimization.

Contact: nicolas.nadisic@umons.ac.be

Code and exp.: https://gitlab.com/nnadisic/ssnmf Slides and paper: http://nicolasnadisic.xyz

