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Nonnegative Matrix Factorization

Given a data matrix M € R7*" and a rank r < min(m, n), find
W e RT*" and H € R*" such that M ~ WH.

In optimization terms, standard NMF is equivalent to:

min ||M — WH|2
W>0,H>0
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Nonnegative Matrix Factorization

Why nonnegativity?

e More interpretable factors (part-based representation)
e Naturally favors sparsity (solution with few nonzeros)

e Makes sense in many applications (image processing, hyperspectral
unmixing, text mining, ...)
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NMF Geometry (M ~ WH)
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NMF Geometry (M ~ WH)

© Data points M(:, j)
A Vertices W(:, p)
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Application — hyperspectral unmixing
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Images from Bioucas Dias and Nicolas Gillis.
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Application — hyperspectral unmixing
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Starting point 1/2 — Separable NMF

e NMF is NP-hard [Vavasis, 2010].

e Under the separability assumption, it's solvable in polynomial time
[Arora et al., 2012].
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Starting point 1/2 — Separable NMF

Separability:

e The vertices are selected among the data points

e In hyperspectral unmixing, equivalent to Pure-pixel assumption

Standard NMF model M = WH
Separable NMF M=M(,JT)H
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Separable NMF — Geometry

o Data points M(:, )
A Selected vertices W(:, )
- -~ Unit simplex
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Algorithm for Separable NMF — SNPA

SNPA = Successive Nonnegative Projection Algorithm [Gillis, 2014]

e Start with empty W, and residual R = M
e Alternate between

e Greedy selection of one column of R to be added to W
e Projection of R on the convex hull of the origin and columns of W

e Stop when reconstruction error = 0 (or < ¢)

(Condition: columns of M have unit ¢1-norm)
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Limitations of Separable NMF

What if one column of W is a combination of others columns of W?
— Interior vertex

SNPA cannot identify it, because it belongs to the convex hull of the
other vertices.
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Limitations of Separable NMF

o Data points M(:, )
A\ Exterior vertices
[ Interior vertex
- -~ Unit simplex
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Limitations of Separable NMF

SNPA is unable to handle this case, the interior vertex is not identifiable.

However, if columns of H are sparse (a data point is a combination of
only k < r vertices), this interior vertex may be identifiable.
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Starting point 2/2 — k-Sparse NMF

M ~ WH s.t. H is column-wise k-sparse (for all i, ||H(:, i)|lo < k)

e Motivation — better interpretability
° — improve results using prior sparsity knowledge

e Ex: a pixel expressed as a combination of at most k materials

]
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k-Sparse NMF — Geom
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k-Sparse NMF

k-Sparse NMF is combinatorial, with (D possible combinations per
column of H.

Previous work: a branch-and-bound algorithm for Exact k-Sparse NNLS
[Nadisic et al., 2020].

root node, unconstrained
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Sparse Separable NMF

Standard NMF model M= WH
Separable NMF M=M(,T)H

SSNMF M= M(:,J)H s.t. for all i, |H(:, )]0 < k
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Our approach for SSNMF

Replace the projection step of SNPA, from projection on convex hull to
projection on k-sparse hull, done with our BnB solver = kSSNPA.

kSSNPA

e |dentifies all interior vertices (non-selected points are never vertices)

e May also identify wrong vertices (explanation to come!)

= kSSNPA can be seen as a screening technique to reduce the number

of points to check.
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Our approach for SSNMF

In a nutshell, 3 steps:

1. ldentify exterior vertices with SNPA
2. ldentify candidate interior vertices with KSSNPA

3. Discard bad candidates, those that are k-sparse combinations of
other selected points (they cannot be vertices)

Our algorithm: BRASSENS Relies on Assumptions of Sparsity and
Separability for Elegant NMF Solving.
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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BRASSENS with sparsity kK = 2
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Complexity

e As opposed to Sep NMF, SSNMF is NP-hard (Arnaud proved it, see
the paper)

e Hardness comes from the k-sparse projection

e Not too bad when r is small, with our BnB solver
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Correctness

Assumption 1 No column of W is a nonnegative linear combination of k
other columns of W.
= necessary condition for recovery by BRASSENS

Assumption 2 No column of W is a nonnegative linear combination of k
other columns of M.
= sufficient condition for recovery by BRASSENS

If data points are k-sparse and generated at random, Assumption 2 is
true with probability one.
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Related work

Only one similar work: [Sun and Xin, 2011]

e Handles only one interior vertex

e Non-optimal bruteforce-like method
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e Experiments on synthetic datasets with interior vertices

e Experiment on underdetermined multispectral unmixing (Urban
image, 309 x 309 pixels, limited to m = 3 spectral bands, and we
search for r = 5 materials)

e No other algorithm can tackle SSNMF, so comparisons are limited

25/33



XP Synthetic: 3 exterior and 2 interior vertices, n grows
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XP Synthetic 2: dimensions grow

m ‘ n ‘ r ‘ k ‘ Number of candidates | Run time in seconds
3125|512 5.5 0.26
4 130|613 8.5 3.30
513|714 9.5 38.71
6 |40 | 8|5 13 395.88

Conclusion from experiments:

o KkSSNPA is efficient to select few candidates
e Still, BRASSENS does not scale well :(
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XP on 3-bands Urban dataset with r =5
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e Theoretical analysis of robustness to noise

e New real-life applications
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Take-home messages

Sparse Separable NMF:

Combine constraints of separability and k-sparsity

e A new way to regularize NMF

e Can handle some cases that Separable NMF cannot

e Underdetermined case

e Interior vertices
e Is NP-hard (unlike Sep NMF), but actually “not so hard” for small r
e |s provably solved by our approach

e Does not scale well
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Contact: nicolas.nadisic@umons.ac.be
Code and exp.: https://gitlab.com/nnadisic/ssnmf

Slides and paper: http://nicolasnadisic.xyz
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