Randomized Successive Projection Algorithm

Nonnegative Matrix Factorization (NMF)

Given an input matrix $X \in \mathbb{R}^{m \times n}_+$ and a factorization rank $r < \min(m, n)$, NMF consists in finding two factors $W \in \mathbb{R}^{m \times r}_+$ and $H \in \mathbb{R}^{r \times n}_+$ such that $X \approx WH.$

Our contribution: Randomized SPA

- Best of both worlds
- Still benefits from provable robustness
- Randomization allows a multi-start strategy

RandSPA

Input: A matrix $X \in \mathbb{R}^{m \times n}$, $r \in \mathbb{N}^*$, v in $\{1, ..., m\}$. **Output:** Index set \mathcal{J} of cardinality *r* such that $X \approx X(:, \mathcal{J})H$ for some $H \geq 0.$ 1 Let $\mathcal{J} = \emptyset, P^{\perp} = I_m, V = [].$ 2 for k = 1 : r do3 Let $Q \in \mathbb{R}^{m \times v}$ be a random matrix (with a normal distribution for instance). 4 Let $j_k = \operatorname{argmax}_{1 \le j \le n} \|Q^\top P^\perp X(:, j)\|_2$ (break ties arbitrarily if needed). 5 Let $\mathcal{J} = \mathcal{J} \cup \{j_k\}$. 6 Update the projector P^{\perp} onto the orthogonal complement of $X(:, \mathcal{J})$:

Assumption: Separability

The matrix $X \in \mathbb{R}^{m \times n}$ is *r*-separable if there exist a subset of columns of X indexed by \mathcal{J} with $|\mathcal{J}| = r$ such that $W = X(:, \mathcal{J})$. Therefore, $X \approx X(:, \mathcal{J})H.$

Separable NMF: find $W = X(:, \mathcal{J})$

 $P^{\perp}X(:,j_k)$ $v_k = \frac{1}{\|P^{\perp}X(:,j_k)\|_2},$ $V \leftarrow [V v_k],$ $P^{\perp} = \left(I_m - V V^T \right).$

RandSPA coincides with SPA when $Q = I_m$, and with VCA when rank(Q) = 1.

Results on hyperspectral unmixing

Dataset	SPA	Med. RandSPA	Best RandSPA	Med. VCA	Best VCA
Jasper	8.69	8.76	8.02	9.47	8.25

Samson	6.49	6.31	3.97	6.34	3.97
Urban	10.94	9.64	6.54	9.61	7.21
Cuprite	2.70	3.53	2.28	4.67	2.64

Table: Relative reconstruction error $||X - WH||_F ||X||_F$ in percent.

Popular separable NMF algorithms

Successive Projection Algorithm (SPA) [Araujo et al, 2001]:

- Deterministic (always output the same result).
- Provably robust to noise.

Vertex Component Analysis (VCA) [Nascimento and Dias, 2005]:

- Random. Can benefit from a multistart strategy.
- Not necessarily robust to noise.

Figure: Abundance maps in false colors from the unmixing of the image Urban.

Robustness to noise Average best in 1 run Average best in 5 runs SPA 50 Ø∕ 25 *v* of 10 Rank 6 3 12 13 13.5 12 12.5 12.5 Average best in 10 runs Average best in 20 runs 50

Theorem [N Gillis, WK Ma. Enhancing pure-pixel identification performance via preconditioning, 2015, SIAM J. Imaging Sci.]

Let X = X + N, where X is separable, W has full column rank, and N is noise with $\max_{j} ||N(:,j)||_2 \le \epsilon$; and let $Q \in \mathbb{R}^{m \times \nu}$ with $\nu \ge r$. If $Q^\top W$ has full column rank and

$$\varepsilon \leq O\left(\frac{\sigma_{\min}(W)}{\sqrt{r\kappa^3(Q^{\top}W)}}\right),$$

then SPA applied on matrix $Q^{\top} \tilde{X}$ identifies a set of indices \mathcal{J} corresponding to the columns of W up to the error $\max_{1 \le j \le r} \min_{k \in \mathcal{J}} \left\| W(:,j) - \tilde{X}(:,k) \right\|_2 \le O\left(\epsilon \kappa(W) \kappa(Q^\top W)^3\right).$

Olivier Vu Thanh, Nicolas Nadisic, Nicolas Gillis

{olivier.vuthanh,nicolas.nadisic,nicolas.gillis}@umons.ac.be

Université de Mons

Figure: Average best reconstruction error on several runs, depending on v, with $\kappa = 1$, on the hyperspectral image Samson with added noise such that SNR = 20 dB.

Code, refs, and preprint: https://gitlab.com/nnadisic/randspa

