
Randomized Successive Projection Algorithm

Nonnegative Matrix Factorization (NMF)

Given an input matrix X ∈ Rm×n+ and a factorization rank r < min(m, n),
NMF consists in finding two factorsW ∈ Rm×r+ and H ∈ Rr×n+ such that
X ≈ WH .

Application — Hyperspectral unmixing

X (:, j)︸︷︷︸
spectral signature of

j-th pixel

≈
∑︁
p

W (:, p)︸  ︷︷  ︸
spectral signature of

p-th material

H (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Assumption: Separability
The matrix X ∈ Rm×n is r-separable if there exist a subset of columns of X
indexed by J with |J | = r such thatW = X (:,J). Therefore,

X ≈ X (:,J)H .

Separable NMF: findW = X (:,J)
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Popular separable NMF algorithms

Successive Projection Algorithm (SPA) [Araujo et al, 2001]:
▶ Deterministic (always output the same result).
▶ Provably robust to noise.

Vertex Component Analysis (VCA) [Nascimento and Dias, 2005]:
▶ Random. Can benefit from a multistart strategy.
▶ Not necessarily robust to noise.

Theorem [N Gillis, WK Ma. Enhancing pure-pixel identification performance

via preconditioning, 2015, SIAM J. Imaging Sci.]

Let X̃ = X + N , where X is separable,W has full column rank, and N is
noise with maxj ∥N (:, j)∥2 ≤ 𝜖 ; and let Q ∈ Rm×𝜈 with 𝜈 ≥ r . If Q⊤W has
full column rank and

𝜖 ≤ O
(

𝜎min(W )√
r𝜅3(Q⊤W )

)
,

then SPA applied on matrix Q⊤X̃ identifies a set of indices J
corresponding to the columns ofW up to the error

max
1≤j≤r

min
k∈J



W (:, j) − X̃ (:, k)

2 ≤ O (
𝜖𝜅 (W )𝜅 (Q⊤W )3

)
.

Our contribution: Randomized SPA
▶ Best of both worlds
▶ Still benefits from provable robustness
▶ Randomization allows a multi-start strategy

RandSPA
Input: A matrix X ∈ Rm×n, r ∈ N∗, 𝜈 in {1, ...,m}.
Output: Index set J of cardinality r such that X ≈ X (:,J)H for some

H ≥ 0.
1 Let J = ∅, P⊥ = Im, V = [ ].
2 for k = 1 : r do
3 Let Q ∈ Rm×𝜈 be a random matrix (with a normal distribution for

instance).
4 Let jk = argmax1≤j≤n ∥Q⊤P⊥X (:, j)∥2 (break ties arbitrarily if needed).
5 Let J = J ∪ {jk}.
6 Update the projector P⊥ onto the orthogonal complement of X (:,J):

vk =
P⊥X (:, jk)
∥P⊥X (:, jk)∥2

,

V ← [V vk],
P⊥ =

(
Im − VV T

)
.

RandSPA coincides with SPA when Q = Im, and
with VCA when rank(Q) = 1.

Results on hyperspectral unmixing

Dataset SPA Med. RandSPA Best RandSPA Med. VCA Best VCA
Jasper 8.69 8.76 8.02 9.47 8.25
Samson 6.49 6.31 3.97 6.34 3.97
Urban 10.94 9.64 6.54 9.61 7.21
Cuprite 2.70 3.53 2.28 4.67 2.64

Table: Relative reconstruction error ∥X −WH ∥F/∥X ∥F in percent.

(a) SPA (b) RandSPA (c) VCA

Figure: Abundance maps in false colors from the unmixing of the image Urban.
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Figure: Average best reconstruction error on several runs, depending on 𝜈 , with 𝜅 = 1, on
the hyperspectral image Samson with added noise such that SNR = 20dB.

Code, refs, and preprint: https://gitlab.com/nnadisic/randspa
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