
Matrix-wise ℓ0-constrained Sparse
Nonnegative Least Squares
and application to hyperspectral unmixing

Nicolas Nadisic, Jeremy E Cohen, Arnaud Vandaele, Nicolas Gillis
02 December 2022 — L2S, CentraleSupélec, Paris-Saclay

Ghent University, Belgium (but work done during my PhD in the University of Mons, Belgium)

1/38

Outline

1. Introduction

2. Column-wise sparse NNLS

3. Matrix-wise sparse NNLS

4. Conclusion

2/38

Introduction

With a little help from my friends

Nicolas Gillis
(UMONS, Belgium)

Arnaud Vandaele
(UMONS, Belgium)

Jeremy Cohen
(CNRS, France)

3/38

Our motivations

High-level motivations:

• Extract underlying structures in data
• Better leverage a priori knowledge, here nonnegativity and sparsity,

to improve models
• Develop algorithms that are both globally optimal and

computationally tractable

4/38

Starting point: linear models

Focus of this work: linear models of the form

B ≈ AX,

where

• B ∈ Rm×n is the data/input matrix, representing measures or
observations,

• A ∈ Rm×r is a coeficient matrix, called dictionary, representing
features, atoms, or components.

• X ∈ Rr×n is a signal or information matrix,
• r ≪ min(m, n)

5/38

One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

6/38

One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈ A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

6/38

Linear mixing model

7/38

Nonnegativity constraint

• Assumes data is generated from an additive linear combination of
features

• Natural in this application
• Produces more interpretable factors

8/38

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

min
X≥0

∥B − AX∥2
F

Can be divided in n independent NNLS subproblems,

min
X(:,j)≥0

∥B(:, j)− AX(:, j)∥2
2

⇔ min
x≥0

∥b − Ax∥2
2

9/38

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

min
X≥0

∥B − AX∥2
F

Can be divided in n independent NNLS subproblems,

min
X(:,j)≥0

∥B(:, j)− AX(:, j)∥2
2

⇔ min
x≥0

∥b − Ax∥2
2

9/38

Multiple Nonnegative Least Squares (MNNLS)

Given B and A, find X ≥ 0

B

≈

A

×

X ≥ 0

10/38

Sparsity — Why?

Sparsity of X ⇒ Each data point is a combination of only a few features

• Regularize the problem
• Better interpretability
• Natural in many applications ⇒ leverage a-priori knowledge to

improve the model

B

≈

A

×

X ≥ 0

11/38

Sparsity in hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈ A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

12/38

Sparsity — How?

The classical way: ℓ1 penalty

min
X≥0

∥B − AX∥2
F + λ∥X∥1

Advantages:

• Convex, easy to optimize

Issues:

• Restrictive condititions for support recovery
• Parameter λ is hard to tune, no physical meaning

13/38

Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the
ℓ0-“norm”, ∥x∥0 = |{i : xi ̸= 0}|)

min
X≥0

∥B − AX∥2
2 s.t. ∥X(:, j)∥0 ≤ k for all j

Advantage:

• Interpretable: each data point is a combination of at most k features

14/38

Column-wise sparse NNLS

Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

min
x≥0

∥Ax − b∥2
2 s.t. ∥x∥0 ≤ k

• Reduces to finding the support of x (set of non-zero entries)
• Combinatorial problem,

(r
k
)

possible supports
• Can be solved approximately by greedy algorithms (ask Charles!)
• Or optimally with branch-and-bound algorithms

15/38

A branch-and-bound algorithm for k-sparse NNLS

Example for r = 5 and k = 2

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Able to prune large parts of the search space.

16/38

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

• What if the relevant k varies between columns?
• For instance, the number of materials varies between pixels

1 2 3 4 5 6

0

1

2

3

4

·104

k-sparsity

Nu
m

be
ro

fp
ixe

ls

Sparsity ℓ0 of the ground truth X of the HSI Urban, n = 94249, r = 6 17/38

Bi-objective sparse NNLS

min
x≥0

{
∥Ax − b∥2

2
∥x∥0

Equivalent to min
x≥0

∥b − Ax∥2
2 s.t. ∥x∥0 ≤ k for all k ∈ {0, . . . , r}

18/38

Bi-objective sparse NNLS

Example for r = 5

0
∥x∥00

∥A
x−

b∥
2 2

1 2 3 4 r = 5

x = 0∥b∥2
2

x ∈ argminx≥0 ∥Ax − b∥2
2

19/38

Extension of the branch-and-bound algorithm

Example for r = 5 and k = 2

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Computes the whole Pareto front!

20/38

How to leverage this bi-objective formulation on a multicolumn problem?

min
X≥0

∥B − AX∥2
F

21/38

Matrix-wise sparse NNLS

Our solution: A matrix-wise ℓ0 constraint

Matrix-wise q-sparse MNNLS
min
X≥0

∥B − AX∥2
F s.t. ∥X∥0 ≤ q

• Can be seen as a global sparsity budget
• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem
⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm

22/38

Our solution: A matrix-wise ℓ0 constraint

Matrix-wise q-sparse MNNLS
min
X≥0

∥B − AX∥2
F s.t. ∥X∥0 ≤ q

• Can be seen as a global sparsity budget
• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem
⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm

22/38

Vectorizing the MNNLS problem is expensive

min
H≥0

∥M − WH∥2
2 s.t. ∥H∥0 ≤ q

⇒ vectorize
min
h≥0

∥m − Ωh∥2
2 s.t. ∥h∥0 ≤ q

where Ω = W ⊗ I ∈ R(m.n)×(r.n) and m =

M(:, 1)
M(:, 2)

...
M(:, n)

 ∈ R(m.n)

23/38

Our contribution: a two-step algorithm

Algorithm Salmon1:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

min
X(:,j)≥0

{ ∥B(:, j)− AX(:, j)∥2
2 , ∥X(:, j)∥0 }

• Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
• Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero
entries and the error is minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

1Salmon Applies ℓ0-constraints Matrix-wise On NNLS problems

24/38

Our contribution: a two-step algorithm

Algorithm Salmon1:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

min
X(:,j)≥0

{ ∥B(:, j)− AX(:, j)∥2
2 , ∥X(:, j)∥0 }

• Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
• Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero
entries and the error is minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

1Salmon Applies ℓ0-constraints Matrix-wise On NNLS problems

24/38

Salmon — Step 1: Build the cost matrix C

• Each row = one sparsity level
• Each column = one column of the MNNLS problem

C0,1 C0,2 · · · C0,n
C1,1 C1,2 · · · C1,n

...
...

Cr,1 Cr,2 · · · Cr,n

C(i, j) ≈ minx≥0 ∥B(:, j)− Ax∥2

2 s.t. ∥x∥0 ≤ i

25/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

C

26/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

26/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

26/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

26/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

…

C

26/38

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

C

26/38

Salmon — Step 2: Select one solution per column

Similar to an assignment problem

C0,1 C0,2 · · · C0,n
C1,1 C1,2 · · · C1,n

...
...

Cr,1 Cr,2 · · · Cr,n

Let zi,j ∈ {0, 1} such that zi,j = 1 if and only if the jth column of X is
i-sparse,

min
z∈{0,1}r×n

∑
i,j

zi,jC(i, j)

such that
∑

i
zi,j = 1 for all j, and

∑
i,j

i zi,j ≤ q.

Solved with a dedicated greedy algorithm, fast but proved near-optimal
27/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

0

∥X∥0 = 0

28/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

∥X∥0 = 1

28/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

∥X∥0 = 2

28/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

∥X∥0 = 3

28/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

∥X∥0 = 5

28/38

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3…

X

∥X∥0 = 5
Iterate while ∥X∥0 < q

28/38

Salmon — Step 2: Greedy selection

Final solution X, q-sparse matrix

X ≈ argmin
X≥0

∥B − AX∥2
F s.t. ∥X∥0 ≤ q

29/38

Near-optimality of the selection step (step 2)

In short:

• The worst case is not too bad (wrong support in at most one
column)

• In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

• The objective function is separable by columns
• At each iteration, we maximize the global decrease in error

30/38

Near-optimality of the selection step (step 2)

In short:

• The worst case is not too bad (wrong support in at most one
column)

• In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

• The objective function is separable by columns
• At each iteration, we maximize the global decrease in error

30/38

Exp: Unmixing of the hyperspectral image Jasper Ridge

31/38

Exp: Unmixing of the hyperspectral image Jasper Ridge

NNLS (no sparse) Col-wise, k = 2

Salmon, q/n = 2 Salmon, q/n = 1.8 32/38

More experiments

If you have time, show experiments from the paper

33/38

Conclusion

Conclusion

• We introduced a sparse MNNLS model with matrix-wise ℓ0-sparsity
constraint

• We developed a two-step algorithm to tackle it
• Makes tractable some problems that are too big for standard NNLS

solvers
• Improves results, allows a finer parameter tuning
• Interesting where sparsity varies between columns

34/38

Overview of my PhD

Nonnegative Matrix Factorization
min

A≥0,X≥0
∥B − AX∥2

F

Separable NMF, estimate A
under separability A = B(:,J)

Sparse MNNLS, estimate X
with A fixed,

min
X≥0

∥B − AX∥2
F s.t. X is sparse

Chapter 3:
Column-wise sparsity
∥X(:, j)∥0 ≤ k for all j

Chapter 3:
Biobjective sparse NNLS
min
x≥0

{∥Ax − b∥2
2, ∥x∥0}

Chapter 4: Matrix-wise
sparsity ∥X∥0 ≤ q

Chapter 5: Sparse
separable NMF

Chapter 2: Smoothed
separable NMF

35/38

Overview smoothed separable NMF

D(:, 1)

D(:, 2) D(:, 3)

Outlier

Data points B(:, j)
Actual endmembers A(:, j)

36/38

Overview sparse separable NMF

B = B(:,J)X such that for all j, ∥X(:, j)∥0 ≤ k

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

Data points B(:, j)
Exterior vertices
Interior vertex
Unit simplex

37/38

Thanks!
Contact: nicolas.nadisic@ugent.be

Paper and code:
http://nicolasnadisic.xyz

=B A
X

mailto:nicolas.nadisic@ugent.be
http://nicolasnadisic.xyz

	Introduction
	Column-wise sparse NNLS
	Matrix-wise sparse NNLS
	Conclusion

