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Our motivations

High-level motivations:

= Extract underlying structures in data

= Better leverage a priori knowledge, here nonnegativity and sparsity,
to improve models

= Develop algorithms that are both globally optimal and
computationally tractable
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Starting point: linear models

Focus of this work: linear models of the form

B~ AX,

where

= B e R™" is the data/input matrix, representing measures or
observations,

= A€ R™"is a coeficient matrix, called dictionary, representing

features, atoms, or components.
= X € R™" s a signal or information matrix,

= r< min(m,n)
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One application — Hyperspectral unmixin
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Images from Bioucas Dias and Nicolas Gillis.
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One application — Hyperspectral unmixing
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6/38



Linear mixing model
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Nonnegativity constraint

= Assumes data is generated from an additive linear combination of
features

= Natural in this application

= Produces more interpretable factors
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

2 _ 2
il 1B — AX||&
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

: _ 2
il 1B — AX||&

Can be divided in n independent NNLS subproblems,

in [|B(:, j) — AX(:, )||?
X(r}jj')goﬂ (:,)) ()5

& min||b— Ax|3
x>0
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Multiple Nonnegative Least Squares (MNNLS)

Given B and A, find X>0
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Sparsity — Why?

Sparsity of X = Each data point is a combination of only a few features

Regularize the problem
Better interpretability

Natural in many applications = leverage a-priori knowledge to

A X>0
NI]X

improve the model
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Sparsity in hyperspectral unmixing

B(:,J) ~ A(:; p) X(p, J)
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Sparsity — How?

Ihe classical way: /1 penalty
in||B— AX||%+ M| X
i | 17+ AllXIl1

Advantages:
= Convex, easy to optimize
Issues:

= Restrictive condititions for support recovery

= Parameter \ is hard to tune, no physical meaning
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Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the
lo-"norm”, ||x|lo = |{i: xi # 0}])

. o 2 t. . ’ < .
g2 = AP e [Pl = Sier el )
Advantage:

= Interpretable: each data point is a combination of at most k features
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Column-wise sparse NNLS




Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

in||Ax — bl? s.t. < k
B [Ax = bll3 s.t. [|x]jo <

= Reduces to finding the support of x (set of non-zero entries)
= Combinatorial problem, (;) possible supports

= Can be solved approximately by greedy algorithms (ask Charles!)

Or optimally with branch-and-bound algorithms
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A branch-and-bound algorithm for k-sparse NNLS

Example for r=5 and k=2

root node, unconstrained

=[xy 23 T3 24 T3] | K <r =5

[z = [0 22 x5 24 x5]] [x =[z1 023 24 x5]] - k<4

[m =100 23 4 ms]] [z =0z 02y zs]] [z =0z 2350 x5]] - k<3

(e=000z2)] (s=[00w50a5]) (z=100w5240])k <2=Fk stop

Able to prune large parts of the search space.
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Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

= What if the relevant k varies between columns?
= For instance, the number of materials varies between pixels
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Bi-objective sparse NNLS

Ax — bl|3
| 1A b
20 | [Ixlo
Equivalent to m>i51 |b— Ax|)3 s.t. |[x|lo < kfor all ke {0,...,r}
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Bi-objective sparse NNLS

Example for r=1>5

1]36x = 0

= @

|

x
=

®
®
x € argmin - [[Ax — blj3

0 : X
0 1 2 3 4 r=5 o
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Extension of the branch-and-bound algorithm

Example for r=5 and k=2

root node, unconstrained

=z 2 w3 x4 35] | K <r=5
[z = [0 @ 3 a4 ([?5]] [av =[z1 0 x3 24 ws]] - k<4
[z =000 z3 24 rs]] [.L =022 024 15]] [96 =[022230 Is]] - k<3

(z=1000mias)] (¢=1000230as5]] (v=1[00a5a0])K <2=Fk stop

Computes the whole Pareto front!
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How to leverage this bi-objective formulation on a multicolumn problem?

2 _ 2
gpzlgl\B AX|[r
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Matrix-wise sparse NNLS




Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
min || B — AX]|2 t. Xllo <
XZH(; | I st [Xlo<g

= Can be seen as a global sparsity budget

= If g = k x n, this enforces an average k-sparsity on the columns of X
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Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
min || B — AX]|2 t. Xllo <
XZH(; | I st [Xlo<g

= Can be seen as a global sparsity budget

= If g = k x n, this enforces an average k-sparsity on the columns of X
How to solve it?

= With a k-sparse NNLS methods, by vectorizing the problem
= leads to a huge NNLS problem, too expensive to solve

= Qur contribution: dedicated algorithm
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Vectorizing the MNNLS problem is expensive

in||M— WH|? s.t. [|H||og <
wzlgll 3 st |[Hllo <q

= vectorize
min ||m — QA2 s.t. ||Allg <
h£3|| Hz s.t |‘ HO ~q

M(:,
where Q = W® I € RI™MX("n) and m = , e R(m-n)
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Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity
= Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

] 1B, J) — AXG5 Q)5 5 IXG)llo 3

= Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
= Build a cost matrix C

1Salmon Applies £p-constraints Matrix-wise On NNLS problems
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Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity

= Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

] 1B, J) — AXG5 Q)5 5 IXG)llo 3

= Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
= Build a cost matrix C

2. Select one solution per column such that in total X has g nonzero
entries and the error is minimized = assignment-like problem

= Dedicated greedy algorithm proved near-optimal

1Salmon Applies £p-constraints Matrix-wise On NNLS problems
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Salmon — Step 1: Build the cost matrix C

= Each row = one sparsity level

= Each column = one column of the MNNLS problem

G G - CGon
Gi1 Gpo - G
Cr,l Cr,2 o Cr n

)

(i)~ mineo [|B(:,)) — Ax|l3 st. [|x]lo < i
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Salmon — Step 1: Generate Pareto fronts

%
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Salmon — Step 1: Generate Pareto fronts

Q

? x € argmin, ., || Az — b[|}
[

llzllo
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Salmon — Step 1: Generate Pareto fronts

Q

i
S ? o € argmin,», [| Az — b}
. .
0 llllo
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Salmon — Step 1: Generate Pareto fronts

N l
~
b3z =0

- .

!

= ? = € argmin, . || Az — b[|3

P
0 llzllo
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Salmon — Step 1: Generate Pareto fronts

%
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Salmon — Step 1: Generate Pareto fronts

%
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Salmon — Step 2: Select one solution per column

Similar to an assignment problem

G G2 - CGon
Gi1 Ga2 - G
Cr,l Cr,2 e Crn

s

Let z;; € {0,1} such that z; =1 if and only if the jth column of X'is

i-sparse,
ZE{O,I}’X n

min ZZ,‘JC(I',J.)
ij

such that Zz,-’j =1 for all j, and Z izij<gq.
i ij
Solved with a dedicated greedy algorithm, fast but proved near-optimal
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Salmon — Step 2: Greedy selection

x> x x x
e

WN O

[Xllo =0
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Salmon — Step 2: Greedy selection

x> x x x

e
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[ Xllo =1
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Salmon — Step 2: Greedy selection

x> x x x

e
WN O

[ Xllo = 2
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Salmon — Step 2: Greedy selection

x> x x x

e
WN O

[ Xllo =3
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Salmon — Step 2: Greedy selection

x> x x x

I

womo
]
|
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Salmon — Step 2: Greedy selection

RN

HEEE
]
|

x> x x x

[Xllo=5
Iterate while || X|jo < g
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Salmon — Step 2: Greedy selection

L L

Final solution X, g-sparse matrix

Xm~argmin||[B—AX[E st [IXlo<q
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Near-optimality of the selection step (step 2)

In short:

= The worst case is not too bad (wrong support in at most one
column)

= In practice, often optimal (19 out of 22 cases in our exp)
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Near-optimality of the selection step (step 2)

In short:

= The worst case is not too bad (wrong support in at most one
column)

= In practice, often optimal (19 out of 22 cases in our exp)
Intuition of the proof:

= The objective function is separable by columns

= At each iteration, we maximize the global decrease in error
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Exp: Unmixing of the hyperspectral image Jasper Ridge
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Exp: Unmixing of the hyperspectral image Jasper Ridge

'3

NNLS (no sparse) Col-wise, k=2

'3

Salmon, q/n =2 Salmon, q/n=1.8 32/38




More experiments

If you have time, show experiments from the paper
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Conclusion




Conclusion

= We introduced a sparse MNNLS model with matrix-wise {p-sparsity
constraint

= We developed a two-step algorithm to tackle it

= Makes tractable some problems that are too big for standard NNLS
solvers

= Improves results, allows a finer parameter tuning

= Interesting where sparsity varies between columns
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Overview of my PhD

Nonnegative Matrix Factorization
min o”B — AX||2

A>0,X>
/ Sparse MNNLS, estimate X
Separable NMF, estimate A with A fixed
under separability A = B(:, J) min | B — AX|2 s.t. X is sparse
X>0

' Chapter 2: Smoothed """ Chapter 3: ST o R N
I I I pter 3: i - ss=s=og
L SFP??'E'F,NMF 77777 i i Column-wise sparsity | i Ch:ptert4.|‘)lz/‘l‘atrz<—W|se 3
! ! arsi
b IXCG)lle < kforalljo L,,,P,;’,X,,,?:,q,,g
- T &

g Chapter 3: [
! Biobjective sparse NNLS |
| minflAx— b3, [xlo} !

Chapter 5: Sparse
separable NMF

35/38



Overview smoothed separable NMF

© Data points B(:,})
< [7] Actual endmembers A(:, )

1
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Overview sparse separable NMF

B=B(:,J)X such that for all j, [|X(:,))|lo < k

o Data points B(:,))
Exterior vertices
[ Interior vertex
- - - Unit simplex




Thanks!

Contact: nicolas.nadisic@ugent.be

Paper and code:
http://nicolasnadisic.xyz
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