Matrix-wise /y-constrained
Sparse Nonnegative Least Squares

and application to hyperspectral unmixing

Nicolas Nadisicl’(z), Jeremy E Cohen®, Arnaud Vandaele?, Nicolas Gillis®

September 2023 — ECMLPKDD, Torino

LGhent University, Belgium
2University of Mons, Belgium
3CNRS, Univ Lyon, France

1/23

Focus of this work: models of the form

where

e B e RT*" is the data/input matrix, representing measures or observations,

e Ac RTX' is a coeficient matrix, called dictionary, representing features, atoms, or
components.

X € R*" is a signal or information matrix,

e r < min(m,n)

Nonnegativity assumes data is generated from an additive linear combination of features

2/23

One application — Hyperspectral unmixing

B(:,))
——

spectral signature of
j-th pixel

3/23

One application — Hyperspectral unmixing

spectral signature of
j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

A(:,p)
——

spectral signature of
p-th material

Road Grass
200 400,
150 300
200
100 100
5 0
0 50 100 150 50 100 150
Dirt Roof tops 1
800 300,
600 200
400 100
2000 50 100 150 0() 50 100 150
Trees Roof tops 2
600 350,
400 300
250
200 200
00 50 100 150 150O 50 100 150

X(p,J)
——
abundance of p-th material
in j-th pixel

3/23

Linear mixing model

Sunlight

Radiance @My

ey

4/23

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

2 _ 2
oy |18 = Abd

5/23

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

- . 2
oy |18 = Abd

Can be divided in n independent NNLS subproblems,
in [|B(:;,j) — AX(;, /)13
X(rfj})goll () ()3

& min||b — Ax||3
x>0

5/23

Sparsity — Why?

Sparsity of X = Each data point is a combination of only a few features

e Regularize the problem
e Better interpretability

e Natural in many applications = leverage a-priori knowledge to improve the model

6/23

A(:, p)
——

N P A
spectral signature of spectral signature of
j-th pixel p-th material
Road Grass
200 400
150 300
200
100 100
5 0
0 50 100 150 50 100 150
Dirt Roof tops 1
800 300
600 200
400 100
205 100 10 % 50 100 150
Trees Roof tops 2
600 350
400 300
250
200 200
% 5o 100 0 "0 50 100 150

X(p.J)
——
abundance of p-th material
in j-th pixel

7/23

Sparsity — How?

The classical way: /1 penalty
min || B — AX||% + \||X ||,
X>0

Advantages:
e Convex, easy to optimize
Issues:

e Restrictive condititions for support recovery

e Parameter)\ is hard to tune, no physical meaning

8/23

Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the (o-"norm”,
Illo = 47 + x: # 0}
21?8" 12 st [|X(:,)llo < k for all j

Advantage:

e Interpretable: each data point is a combination of at most k features

9/23

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

e What if the relevant k varies between columns?
e For instance, the number of materials varies between pixels

Number of pixels

-10*

1 2 3 4 5 6 k-sparsity

Sparsity £y of the columns of the
ground truth X of the HSI Urban,
n=94249, r =6

10/23

Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
- o D <
min 1B—-AX|lz st [X[o<gqg

e Can be seen as a global sparsity budget

e If g = k x n, this enforces an average k-sparsity on the columns of X

11/23

Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
- o D <
min 1B—-AX|lz st [X[o<gqg

e Can be seen as a global sparsity budget

e If g = k x n, this enforces an average k-sparsity on the columns of X
How to solve it?

e With a k-sparse NNLS methods, by vectorizing the problem
= leads to a huge NNLS problem, too expensive to solve

e Our contribution: dedicated algorithm, divide and conquer

11/23

Bi-objective sparse NNLS

Ax — 2
[l1Ax - bl

<20 | [xllo

Equivalent to m>i51 |Ax — b||3 s.t. ||x|lo < k for all k € {0,...,r}

12/23

Bi-objective sparse NNLS — Pareto front

Example for r =5

I6]36x = 0

a ©
|

x

S5

(@)
(@)
x € argmin . [|Ax — b3
0 X
0 1 2 3 4 r=5 Il

13/23

Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different tradeoffs between
reconstruction error and sparsity

e Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

i £ 1BCS) = AXCA)IE S IXCo)llo b

e Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
e Build a cost matrix C

1Salmon Applies £o-constraints Matrix-wise On NNLS problems

14/23

Salmon — Step 1: Build the cost matrix C

e Each row = one sparsity level

e Each column = one column of the MNNLS problem

Co1 G -+ Gon
CGi1 Ggao -+ G
C.r,l Cr,2 e Cr n

C(i,j) = mineo||B(:,)) — Ax|[3 s.t. |Ixflo < i

15/23

Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different tradeoffs between
reconstruction error and sparsity

e Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems
i B(:,j) — AX(:,)13 X(:Jj
X(rn,jl)nZO{ || (7./) (7./)”2) || (7./)“0 }
e Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
e Build a cost matrix C

2. Select one solution per column such that in total X has g nonzero entries and the error is
minimized = assignment-like problem

e Dedicated greedy algorithm proved near-optimal

2Salmon Applies £g-constraints Matrix-wise On NNLS problems

16/23

Salmon — Step 1: Generate Pareto fronts

&Q

17/23

Salmon — Step 1: Generate Pareto fronts

X
~
b3 ¢z =0

& .

= .

|

] .

S 2 € argmin, ., [|Az — b||3

. .
%1 2z 3 4 r=5 'l c

17/23

Salmon — Step 1: Generate Pareto fronts

~
b3 ¢2 =0

an .

= .

|

] .

= z € argmin, - || Az — b|3

. .
0 T
01 2 3 4 s=p o c

17/23

Salmon — Step 1: Generate Pareto fronts

~

o3}z = o

Rlal .

= .

|

) .)

= z € argmin, - | Az — b||3

. .
0 E
01 2 3 4 s=p M c

17/23

Salmon — Step 1: Generate Pareto fronts

B A X

Q

17/23

Salmon — Step 1: Generate Pareto fronts

B A X

Q

17/23

Salmon — Step 2: Select one solution per column

Gi Ge - G with C(i,j) ~ mineso || B(:,J) — Ax|2 s.t. ||x]lo < i

18/23

Salmon — Step 2: Select one solution per column

Gi Ge - G with C(i,j) ~ mineso || B(:,J) — Ax|2 s.t. ||x]lo < i

Similar to an assignment problem

Let z;j € {0,1} such that z j = 1 if and only if the jth column of X is i-sparse,

min "7 ;C(i,))
ij

ze{0,1}rxn

such that Zz,-yj =1 for all j, and Ziz,-yj <gq.
i

iJj
Solved with a dedicated greedy algorithm, fast but proved near-optimal

18/23

Near-optimality of the selection step (step 2)

In short:

e The worst case is not too bad (wrong support in at most one column)

e In practice, often optimal (19 out of 22 cases in our exp)

19/23

Near-optimality of the selection step (step 2)

In short:

e The worst case is not too bad (wrong support in at most one column)

e In practice, often optimal (19 out of 22 cases in our exp)
Intuition of the proof:

e The objective function is separable by columns

e At each iteration, we maximize the global decrease in error

19/23

Exp: Unmixing of the hyperspectral image Jasper Ridge

20/23

Exp: Unmixing of the hyperspectral image Jasper Ridge (r = 4)

Using homotopy in step 1. We show only one material (row of X reshaped) corresp. to water.

'4'3'9'3

NNLS (no sparse) Col-wise, k =2 Salmon, q/n =2 Salmon, q/n=1.8
Error = 5.71% Error = 6.99% Error = 5.72% Error = 5.95%
Actual sparsity = 2.27 Actual sparsity = 1.78

21/23

Conclusion

We introduced a sparse MNNLS model with matrix-wise /p-sparsity constraint

We developed a two-step algorithm to tackle it

Makes tractable some problems that are too big for standard NNLS solvers

e Improves results, allows a finer parameter tuning

Interesting where sparsity varies between columns

22/23

Matrix-wise fg-constrained Sparse Nonnegative Least Squares

Nicolas Nadisic, Jeremy E Cohen, Arnaud Vandaele, Nicolas Gillis

Contact:
nicolas.nadisic@ugent.be

Paper and code:
http://nicolasnadisic.xyz

[}

m (|
x B @
-I a8 =

mailto:nicolas.nadisic@ugent.be
http://nicolasnadisic.xyz

Back-up slides

Vectorizing the MNNLS problem is expensive

in||M— WH|3 st. ||H|o <
E‘Z'%H 2 st [[Hlo<gq

= vectorize
h>|g H H2 st ” HO

where Q = W @ | € R(mm)x(rn) and m =

Experiments — Computing time, error

AS ¢;-CD Hcw H+4S OGew OGg OG+S ARBOcw ARBO+S
k=3 Sparsity | 3.45 3 2.86 2.99 2.7 3 3 2.76 3
Jasper Time 0.34 0.22 0.38 0.48 0.39 6.08 1.12 1.21 1.93
r==4 Error 571 b5.72 6.99 b5.72* 7.49 576 5.73 6.18 5.71*
k=2 Sparsity | 2.27 2 1.78 1.99 1.72 2 2 1.78 2
Jasper Time - 0.18 - 044 - 526 1.15 - 1.7
r=4 Error - 7.87 - 5.95% - 6.06 b5.77" - 5.74
g/n=1.8 Sparsity | - 1.8 - 1.79 - 1.8 1.8 - 1.8
Samson Time 022 0.24 0.2 0.26 0.31 3.67 0.57 0.52 0.8
r=3 Error 33 33 334 3.3 676 332 3.3 34 3.3*
k=2 Sparsity | 22 2 1.85 2 1.6 1.99 1.99 1.83 2
Urban Time 5.08 4.31 486 7.79 3.38 958 16.4 335 73.1
r==6 Error 7.67 8.13 8.62 7.83* 8.97 8.07 7.76* 8.27 7.71*
k=2 Sparsity | 2.63 2 19 2 1.7 2 2 1.83 2
Cuprite Time 519 3.32 7.86 10.1 5.06 620 315 784 4829
r=12 Error 1.74 317 237 201 2.32 1.97 1.89* 1.93 1.83*
k=4 Sparsity | 6.61 4 392 4 3.53 4 4 3.81 4

Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

in||Ax — b||? s.t. < k
ity |Ax = b|3 s.t. [Ix]lo <

Reduces to finding the support of x (set of non-zero entries)

e Combinatorial problem, (}) possible supports

Can be solved approximately by greedy algorithms

Or optimally with branch-and-bound algorithms

A branch-and-bound algorithm for k-sparse NNLS

Example for r =5 and k =2

root node, unconstrained

[= [z1 22 x3x4z5]jk’§r=5
[z =[0z2 x3 24 :1:5]] [:1: = [z, 0 23 24 xSU Y
[ac =[00x3 24 25]} [3: =[0220 x4 as5]j [ac =022 230 x5U k<3

[:[0003:4m5U {x:[00m30x5]} [=[00m3x40Uk’§2:k—>st0p

Able to prune large parts of the search space.

Extension of the branch-and-bound algorithm

Example for r =5 and k =2

root node, unconstrained

[= [z1 22 x3x4z5]jk’§r=5
[z =[0z2 x3 24 :1:5]] [:1: = [z, 0 23 24 xSU Y
[ac =[00x3 24 25]} [3: =[0220 x4 as5]j [ac =022 230 x5U k<3

[:[0003:4m5U {x:[00m30x5]} [=[00m3x40Uk’§2:k—>st0p

Computes the whole Pareto front!

How to leverage this bi-objective formulation on a multicolumn problem?

2 o 2
(r0g |18 = 2B

Salmon — Step 2: Greedy selection

xxx x
S
TwnROo

[X[lo=0

Salmon — Step 2: Greedy selection

xx xx
[
TwnROo

[X[lo =1

Salmon — Step 2: Greedy selection

xx xx
[
TwnROo

[Xlo =2

Salmon — Step 2: Greedy selection

xx xx
[
TwnROo

1X]lo =3

Salmon — Step 2: Greedy selection

xxxx

'R

wNo
[
N

Salmon — Step 2: Greedy selection

B
e

WO
=
]

Iterate while || X||op < ¢

Salmon — Step 2: Greedy selection

L

Final solution X, g-sparse matrix

X ~ in[|[B—AX[[z st [X[o<
e | 7 st [Xlo<gq

	Appendix

