Matrix-wise ℓ_0 -constrained Sparse Nonnegative Least Squares

and application to hyperspectral unmixing

 N icolas N adisic $^{1,(2)}$, Jeremy E Cohen 3 , Arnaud Vandaele 2 , Nicolas Gillis 2 September 2023 — ECMLPKDD, Torino

¹Ghent University, Belgium ²University of Mons, Belgium ³CNRS, Univ Lyon, France

Focus of this work: models of the form

$B \approx AX$.

where

- $B \in \mathbb{R}_+^{m \times n}$ is the data/input matrix, representing measures or observations,
- \bullet $A \in \mathbb{R}_+^{m \times r}$ is a coeficient matrix, called dictionary, representing features, atoms, or components.
- $\bullet \; \; X \in \mathbb{R}_+^{r \times n}$ is a signal or information matrix,
- $r \ll \min(m, n)$
- Nonnegativity assumes data is generated from an additive linear combination of features

One application — Hyperspectral unmixing

 $B(:, j)$ | {z } spectral signature of j-th pixel

One application — Hyperspectral unmixing

Images from Bioucas Dias and Nicolas Gillis.

Linear mixing model

Multiple Nonnegative Least Squares (MNNLS) problem

$$
\min_{X\geq 0} \|B - AX\|_F^2
$$

Multiple Nonnegative Least Squares (MNNLS) problem

$$
\min_{X\geq 0} \|B - AX\|_F^2
$$

Can be divided in n independent NNLS subproblems,

$$
\min_{X(:,j)\geq 0} \|B(:,j) - AX(:,j)\|_2^2
$$

\n
$$
\Leftrightarrow \min_{x\geq 0} \|b - Ax\|_2^2
$$

Sparsity — Why?

Sparsity of $X \Rightarrow$ Each data point is a combination of only a few features

- Regularize the problem
- Better interpretability
- Natural in many applications \Rightarrow leverage a-priori knowledge to improve the model

Sparsity in hyperspectral unmixing

The classical way: ℓ_1 penalty

$$
\min_{X \ge 0} \|B - AX\|_F^2 + \lambda \|X\|_1
$$

Advantages:

• Convex, easy to optimize

Issues:

- Restrictive condititions for support recovery
- Parameter λ is hard to tune, no physical meaning

More intuitive formulation: column-wise k-sparsity constraint, using the ℓ_0 -"norm", $||x||_0 = |\{i : x_i \neq 0\}|$ min $\min_{X\geq 0} \|B - AX\|_2^2$ s.t. $\|X(:, j)\|_0 \leq k$ for all j

Advantage:

• Interpretable: each data point is a combination of at most k features

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

- What if the relevant k varies between columns?
- For instance, the number of materials varies between pixels

Sparsity ℓ_0 of the columns of the ground truth X of the HSI Urban, $n = 94249$, $r = 6$

Matrix-wise q-sparse MNNLS

$$
\min_{X \ge 0} \|B - AX\|_F^2 \quad \text{s.t.} \quad \|X\|_0 \le q
$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

Matrix-wise q-sparse MNNLS

$$
\min_{X \ge 0} \|B - AX\|_F^2 \quad \text{s.t.} \quad \|X\|_0 \le q
$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

How to solve it?

- With a *k*-sparse NNLS methods, by vectorizing the problem ⇒ leads to a huge NNLS problem, too expensive to solve
- Our contribution: dedicated algorithm, divide and conquer

$$
\min_{x \geq 0} \left\{ \frac{\|Ax - b\|_2^2}{\|x\|_0} \right\}
$$

Equivalent to min $\min_{x \geq 0} \|Ax - b\|_2^2$ s.t. $\|x\|_0 \leq k$ for all $k \in \{0, ..., r\}$

Bi-objective sparse NNLS — Pareto front

Example for $r = 5$

Algorithm Salmon¹:

- 1. Generate a set of solutions for every column of X , with different tradeoffs between reconstruction error and sparsity
	- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min_{X(:,j)\geq 0}\{\n\quad \|B(:,j)-AX(:,j)\|_2^2 ,\nquad \|X(:,j)\|_0 \quad \}
$$

- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C

¹Salmon Applies ℓ_0 -constraints Matrix-wise On NNLS problems

- \bullet Each row $=$ one sparsity level
- \bullet Each column $=$ one column of the MNNLS problem

$$
\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}
$$

 $C(i,j) \approx \min_{x \geq 0} ||B(:,j) - Ax||_2^2 \text{ s.t. } ||x||_0 \leq i$

Algorithm Salmon²:

- 1. Generate a set of solutions for every column of X , with different tradeoffs between reconstruction error and sparsity
	- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min_{X(:,j)\geq 0}\{\quad \|B(:,j)-AX(:,j)\|_2^2\quad ,\quad \|X(:,j)\|_0\quad \}
$$

- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C
- 2. Select one solution per column such that in total X has q nonzero entries and the error is minimized \Rightarrow assignment-like problem
	- Dedicated greedy algorithm proved near-optimal

²Salmon Applies ℓ_0 -constraints Matrix-wise On NNLS problems

Salmon - Step 1: Generate Pareto fronts

Salmon — Step 1: Generate Pareto fronts

Salmon — Step 1: Generate Pareto fronts

Salmon — Step 1: Generate Pareto fronts

Salmon - Step 1: Generate Pareto fronts

Salmon - Step 1: Generate Pareto fronts

Salmon — Step 2: Select one solution per column

with
$$
C(i, j) \approx \min_{x \ge 0} ||B(:,j) - Ax||_2^2
$$
 s.t. $||x||_0 \le i$

Salmon — Step 2: Select one solution per column

with
$$
C(i, j) \approx \min_{x \ge 0} ||B(:,j) - Ax||_2^2
$$
 s.t. $||x||_0 \le i$

Similar to an assignment problem

Let $z_{i,j} \in \{0,1\}$ such that $z_{i,j} = 1$ if and only if the jth column of X is *i*-sparse,

$$
\min_{z \in \{0,1\}^{r \times n}} \sum_{i,j} z_{i,j} C(i,j)
$$
\nsuch that

\n
$$
\sum_{i} z_{i,j} = 1 \text{ for all } j, \text{ and } \sum_{i,j} i z_{i,j} \leq q.
$$

Solved with a dedicated greedy algorithm, fast but proved near-optimal

In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

- The objective function is separable by columns
- At each iteration, we maximize the global decrease in error

Exp: Unmixing of the hyperspectral image Jasper Ridge

Exp: Unmixing of the hyperspectral image Jasper Ridge ($r = 4$)

Using homotopy in step 1. We show only one material (row of X reshaped) corresp. to water.

NNLS (no sparse) Error $= 5.71\%$ Actual sparsity $= 2.27$

Col-wise, $k = 2$ Error $= 6.99\%$ Actual sparsity $= 1.78$

Salmon, $q/n = 2$ Error $= 5.72\%$

Salmon, $q/n = 1.8$ Error $= 5.95\%$

- We introduced a sparse MNNLS model with matrix-wise ℓ_0 -sparsity constraint
- We developed a two-step algorithm to tackle it
- Makes tractable some problems that are too big for standard NNLS solvers
- Improves results, allows a finer parameter tuning
- Interesting where sparsity varies between columns

Matrix-wise ℓ_0 -constrained Sparse Nonnegative Least Squares Nicolas Nadisic, Jeremy E Cohen, Arnaud Vandaele, Nicolas Gillis

Contact:

nicolas.nadisic@ugent.be

Paper and code:

<http://nicolasnadisic.xyz>

Back-up slides

$$
\min_{H \ge 0} \|M - WH\|_2^2 \text{ s.t. } \|H\|_0 \le q
$$
\n
$$
\Rightarrow \text{ vectorize}
$$
\n
$$
\min_{h \ge 0} \|m - \Omega h\|_2^2 \text{ s.t. } \|h\|_0 \le q
$$
\n
$$
\text{where } \Omega = W \otimes I \in \mathbb{R}^{(m,n) \times (r,n)} \text{ and } m = \begin{bmatrix} M(:,1) \\ M(:,2) \\ \vdots \\ M(:,n) \end{bmatrix} \in \mathbb{R}^{(m,n)}
$$

Experiments — Computing time, error

Let us focus on the one-column problem for now,

$$
\min_{x\geq 0} \|Ax - b\|_2^2 \text{ s.t. } \|x\|_0 \leq k
$$

- Reduces to finding the support of x (set of non-zero entries)
- Combinatorial problem, $\binom{r}{k}$ possible supports
- Can be solved approximately by greedy algorithms
- Or optimally with branch-and-bound algorithms

A branch-and-bound algorithm for k-sparse NNLS

Example for $r = 5$ and $k = 2$

Able to prune large parts of the search space.

Extension of the branch-and-bound algorithm

Example for $r = 5$ and $k = 2$

Computes the whole Pareto front!

How to leverage this bi-objective formulation on a multicolumn problem?

$$
\min_{X\geq 0} \|B - AX\|_F^2
$$

Final solution X , q-sparse matrix

$$
X \approx \arg\min_{X \geq 0} \|B - AX\|_F^2 \quad \text{s.t.} \quad \|X\|_0 \leq q
$$