
Matrix-wise `0-constrained

Sparse Nonnegative Least Squares

and application to hyperspectral unmixing

Nicolas Nadisic1,(2), Jeremy E Cohen3, Arnaud Vandaele2, Nicolas Gillis2

September 2023 — ECMLPKDD, Torino

1Ghent University, Belgium
2University of Mons, Belgium
3CNRS, Univ Lyon, France

1/23

Starting point: low-rank nonnegative linear models

Focus of this work: models of the form

B ≈ AX ,

where

• B ∈ Rm×n
+ is the data/input matrix, representing measures or observations,

• A ∈ Rm×r
+ is a coeficient matrix, called dictionary, representing features, atoms, or

components.

• X ∈ Rr×n
+ is a signal or information matrix,

• r � min(m, n)

• Nonnegativity assumes data is generated from an additive linear combination of features

2/23

One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

Images from Bioucas Dias and Nicolas Gillis.

3/23

One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.
3/23

Linear mixing model

4/23

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

min
X≥0
‖B − AX‖2F

Can be divided in n independent NNLS subproblems,

min
X (:,j)≥0

‖B(:, j)− AX (:, j)‖22

⇔ min
x≥0
‖b − Ax‖22

5/23

How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

min
X≥0
‖B − AX‖2F

Can be divided in n independent NNLS subproblems,

min
X (:,j)≥0

‖B(:, j)− AX (:, j)‖22

⇔ min
x≥0
‖b − Ax‖22

5/23

Sparsity — Why?

Sparsity of X ⇒ Each data point is a combination of only a few features

• Regularize the problem

• Better interpretability

• Natural in many applications ⇒ leverage a-priori knowledge to improve the model

B

≈

A

×

X ≥ 0

6/23

Sparsity in hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X (p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

7/23

Sparsity — How?

The classical way: `1 penalty

min
X≥0
‖B − AX‖2F + λ‖X‖1

Advantages:

• Convex, easy to optimize

Issues:

• Restrictive condititions for support recovery

• Parameter λ is hard to tune, no physical meaning

8/23

Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the `0-“norm”,

‖x‖0 = |{i : xi 6= 0}|

min
X≥0
‖B − AX‖22 s.t. ‖X (:, j)‖0 ≤ k for all j

Advantage:

• Interpretable: each data point is a combination of at most k features

9/23

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

• What if the relevant k varies between columns?

• For instance, the number of materials varies between pixels

1 2 3 4 5 6

0

1

2

3

4

·104

k-sparsity

N
u

m
b

er
of

p
ix

el
s

Sparsity `0 of the columns of the

ground truth X of the HSI Urban,

n = 94249, r = 6

10/23

Our solution: A matrix-wise `0 constraint

Matrix-wise q-sparse MNNLS

min
X≥0
‖B − AX‖2F s.t. ‖X‖0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm, divide and conquer

11/23

Our solution: A matrix-wise `0 constraint

Matrix-wise q-sparse MNNLS

min
X≥0
‖B − AX‖2F s.t. ‖X‖0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of X

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

⇒ leads to a huge NNLS problem, too expensive to solve

• Our contribution: dedicated algorithm, divide and conquer

11/23

Bi-objective sparse NNLS

min
x≥0

{
‖Ax − b‖2

2

‖x‖0

Equivalent to min
x≥0
‖Ax − b‖22 s.t. ‖x‖0 ≤ k for all k ∈ {0, . . . , r}

12/23

Bi-objective sparse NNLS — Pareto front

Example for r = 5

0
‖x‖00

‖A
x
−

b
‖2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax − b‖22

13/23

Our contribution: a two-step algorithm

Algorithm Salmon1:

1. Generate a set of solutions for every column of X , with different tradeoffs between

reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

min
X (:,j)≥0

{ ‖B(:, j)− AX (:, j)‖22 , ‖X (:, j)‖0 }

• Solve with branch-and-bound, or heuristic (homotopy, greedy algo)

• Build a cost matrix C

1Salmon Applies `0-constraints Matrix-wise On NNLS problems

14/23

Salmon — Step 1: Build the cost matrix C

• Each row = one sparsity level

• Each column = one column of the MNNLS problem

C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n

C (i , j) ≈ minx≥0 ‖B(:, j)− Ax‖22 s.t. ‖x‖0 ≤ i

15/23

Our contribution: a two-step algorithm

Algorithm Salmon2:

1. Generate a set of solutions for every column of X , with different tradeoffs between

reconstruction error and sparsity

• Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

min
X (:,j)≥0

{ ‖B(:, j)− AX (:, j)‖22 , ‖X (:, j)‖0 }

• Solve with branch-and-bound, or heuristic (homotopy, greedy algo)

• Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero entries and the error is

minimized ⇒ assignment-like problem

• Dedicated greedy algorithm proved near-optimal

2Salmon Applies `0-constraints Matrix-wise On NNLS problems

16/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

C

17/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

17/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

17/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

C

17/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

. . .

C

17/23

Salmon — Step 1: Generate Pareto fronts

B

≈

A

×

X

C

17/23

Salmon — Step 2: Select one solution per column

C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n

 with C (i , j) ≈ minx≥0 ‖B(:, j)− Ax‖22 s.t. ‖x‖0 ≤ i

Similar to an assignment problem

Let zi,j ∈ {0, 1} such that zi,j = 1 if and only if the jth column of X is i-sparse,

min
z∈{0,1}r×n

∑
i,j

zi,jC (i , j)

such that
∑
i

zi,j = 1 for all j , and
∑
i,j

i zi,j ≤ q.

Solved with a dedicated greedy algorithm, fast but proved near-optimal

18/23

Salmon — Step 2: Select one solution per column

C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n

 with C (i , j) ≈ minx≥0 ‖B(:, j)− Ax‖22 s.t. ‖x‖0 ≤ i

Similar to an assignment problem

Let zi,j ∈ {0, 1} such that zi,j = 1 if and only if the jth column of X is i-sparse,

min
z∈{0,1}r×n

∑
i,j

zi,jC (i , j)

such that
∑
i

zi,j = 1 for all j , and
∑
i,j

i zi,j ≤ q.

Solved with a dedicated greedy algorithm, fast but proved near-optimal

18/23

Near-optimality of the selection step (step 2)

In short:

• The worst case is not too bad (wrong support in at most one column)

• In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

• The objective function is separable by columns

• At each iteration, we maximize the global decrease in error

19/23

Near-optimality of the selection step (step 2)

In short:

• The worst case is not too bad (wrong support in at most one column)

• In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

• The objective function is separable by columns

• At each iteration, we maximize the global decrease in error

19/23

Exp: Unmixing of the hyperspectral image Jasper Ridge

20/23

Exp: Unmixing of the hyperspectral image Jasper Ridge (r = 4)

Using homotopy in step 1. We show only one material (row of X reshaped) corresp. to water.

NNLS (no sparse)

Error = 5.71%

Actual sparsity = 2.27

Col-wise, k = 2

Error = 6.99%

Actual sparsity = 1.78

Salmon, q/n = 2

Error = 5.72%

Salmon, q/n = 1.8

Error = 5.95%

21/23

Conclusion

• We introduced a sparse MNNLS model with matrix-wise `0-sparsity constraint

• We developed a two-step algorithm to tackle it

• Makes tractable some problems that are too big for standard NNLS solvers

• Improves results, allows a finer parameter tuning

• Interesting where sparsity varies between columns

22/23

Matrix-wise `0-constrained Sparse Nonnegative Least Squares

Nicolas Nadisic, Jeremy E Cohen, Arnaud Vandaele, Nicolas Gillis

Contact:

nicolas.nadisic@ugent.be

Paper and code:

http://nicolasnadisic.xyz

=B A
X

mailto:nicolas.nadisic@ugent.be
http://nicolasnadisic.xyz

Back-up slides

Vectorizing the MNNLS problem is expensive

min
H≥0
‖M −WH‖22 s.t. ‖H‖0 ≤ q

⇒ vectorize

min
h≥0
‖m − Ωh‖22 s.t. ‖h‖0 ≤ q

where Ω = W ⊗ I ∈ R(m.n)×(r .n) and m =

M(:, 1)

M(:, 2)
...

M(:, n)

 ∈ R(m.n)

Experiments — Computing time, error

AS `1-CD Hcw H+S OGcw OGg OG+S ARBOcw ARBO+S

k = 3 Sparsity 3.45 3 2.86 2.99 2.7 3 3 2.76 3

Jasper Time 0.34 0.22 0.38 0.48 0.39 6.08 1.12 1.21 1.93

r = 4 Error 5.71 5.72 6.99 5.72∗ 7.49 5.76 5.73 6.18 5.71∗

k = 2 Sparsity 2.27 2 1.78 1.99 1.72 2 2 1.78 2

Jasper Time - 0.18 - 0.44 - 5.26 1.15 - 1.7

r = 4 Error - 7.87 - 5.95∗ - 6.06 5.77∗ - 5.74∗

q/n = 1.8 Sparsity - 1.8 - 1.79 - 1.8 1.8 - 1.8

Samson Time 0.22 0.24 0.2 0.26 0.31 3.67 0.57 0.52 0.8

r = 3 Error 3.3 3.3 3.34 3.3∗ 6.76 3.32 3.3∗ 3.4 3.3∗

k = 2 Sparsity 2.2 2 1.85 2 1.6 1.99 1.99 1.83 2

Urban Time 5.08 4.31 4.86 7.79 3.38 958 16.4 33.5 73.1

r = 6 Error 7.67 8.13 8.62 7.83∗ 8.97 8.07 7.76∗ 8.27 7.71∗

k = 2 Sparsity 2.63 2 1.9 2 1.7 2 2 1.83 2

Cuprite Time 5.19 3.32 7.86 10.1 5.06 620 31.5 784 4829

r = 12 Error 1.74 3.17 2.37 2.01 2.32 1.97 1.89∗ 1.93 1.83∗

k = 4 Sparsity 6.61 4 3.92 4 3.53 4 4 3.81 4

Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

min
x≥0
‖Ax − b‖22 s.t. ‖x‖0 ≤ k

• Reduces to finding the support of x (set of non-zero entries)

• Combinatorial problem,
(
r
k

)
possible supports

• Can be solved approximately by greedy algorithms

• Or optimally with branch-and-bound algorithms

A branch-and-bound algorithm for k-sparse NNLS

Example for r = 5 and k = 2

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Able to prune large parts of the search space.

Extension of the branch-and-bound algorithm

Example for r = 5 and k = 2

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Computes the whole Pareto front!

How to leverage this bi-objective formulation on a multicolumn problem?

min
X≥0
‖B − AX‖2F

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

0

‖X‖0 = 0

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

‖X‖0 = 1

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

‖X‖0 = 2

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

‖X‖0 = 3

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

‖X‖0 = 5

Salmon — Step 2: Greedy selection

C
k = 0
k = 1
k = 2
k = 3. . .

X

‖X‖0 = 5

Iterate while ‖X‖0 < q

Salmon — Step 2: Greedy selection

Final solution X , q-sparse matrix

X ≈ arg min
X≥0
‖B − AX‖2F s.t. ‖X‖0 ≤ q

	Appendix

