Matrix-wise ℓ_0 -constrained Sparse Nonnegative Least Squares

and application to hyperspectral unmixing

<u>Nicolas Nadisic^{1,(2)}</u>, Jeremy E Cohen³, Arnaud Vandaele², Nicolas Gillis² September 2023 — ECMLPKDD, Torino

¹Ghent University, Belgium ²University of Mons, Belgium ³CNRS, Univ Lyon, France Focus of this work: models of the form

$B \approx AX$,

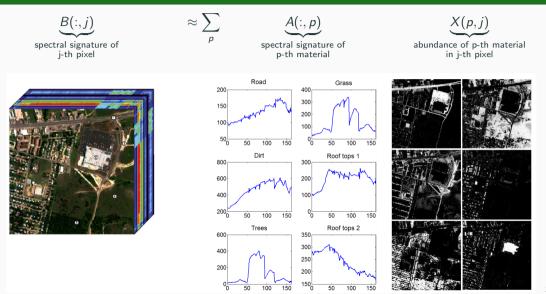
where

- $B \in \mathbb{R}^{m \times n}_+$ is the data/input matrix, representing measures or observations,
- A ∈ ℝ^{m×r}₊ is a coeficient matrix, called dictionary, representing features, atoms, or components.
- $X \in \mathbb{R}^{r \times n}_+$ is a signal or information matrix,
- $r \ll \min(m, n)$
- Nonnegativity assumes data is generated from an additive linear combination of features

One application — Hyperspectral unmixing

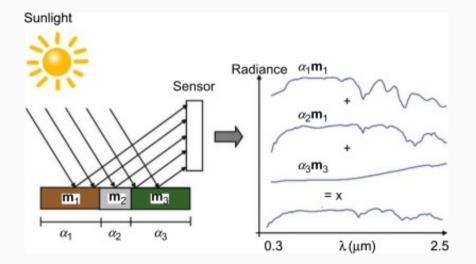
B(:, j)spectral signature of j-th pixel

One application — Hyperspectral unmixing



Images from Bioucas Dias and Nicolas Gillis.

Linear mixing model



Multiple Nonnegative Least Squares (MNNLS) problem

$$\min_{\mathbf{X}\geq 0}\|B-A\mathbf{X}\|_F^2$$

Multiple Nonnegative Least Squares (MNNLS) problem

$$\min_{\mathbf{X}\geq 0}\|B-A\mathbf{X}\|_F^2$$

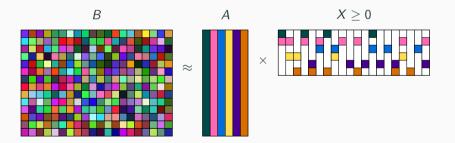
Can be divided in *n* independent NNLS subproblems,

$$\min_{\substack{\boldsymbol{X}(:,j) \ge 0}} \|B(:,j) - A\boldsymbol{X}(:,j)\|_{2}^{2}$$
$$\Leftrightarrow \min_{\substack{\boldsymbol{x} \ge 0}} \|b - A\boldsymbol{x}\|_{2}^{2}$$

Sparsity — Why?

Sparsity of $X \Rightarrow$ Each data point is a combination of only a few features

- Regularize the problem
- Better interpretability
- Natural in many applications \Rightarrow leverage a-priori knowledge to improve the model

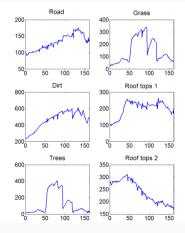


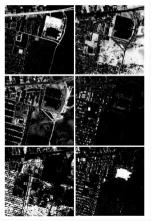
Sparsity in hyperspectral unmixing

spectral signature of p-th material

abundance of p-th material in j-th pixel







The classical way: ℓ_1 penalty

$$\min_{\mathbf{X} \ge 0} \|B - A\mathbf{X}\|_F^2 + \lambda \|\mathbf{X}\|_1$$

Advantages:

• Convex, easy to optimize

Issues:

- Restrictive condititions for support recovery
- Parameter λ is hard to tune, no physical meaning

More intuitive formulation: column-wise k-sparsity constraint, using the ℓ_0 -"norm", $||x||_0 = |\{i : x_i \neq 0\}|$

$$\min_{\mathbf{X} \ge 0} \|B - A\mathbf{X}\|_2^2 \text{ s.t. } \|\mathbf{X}(:,j)\|_0 \le k \text{ for all } j$$

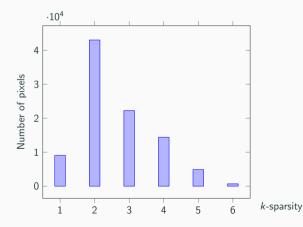
Advantage:

• Interpretable: each data point is a combination of at most k features

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

- What if the relevant k varies between columns?
- For instance, the number of materials varies between pixels



Sparsity ℓ_0 of the columns of the ground truth X of the HSI Urban, n = 94249, r = 6

Matrix-wise q-sparse MNNLS

$$\min_{\mathbf{X} \ge 0} \|B - A\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \|\mathbf{X}\|_0 \le q$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

Matrix-wise q-sparse MNNLS

$$\min_{\mathbf{X} \ge 0} \|B - A\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \|\mathbf{X}\|_0 \le q$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of X

How to solve it?

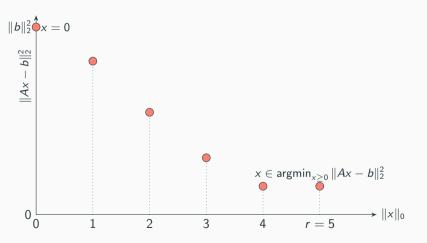
- With a k-sparse NNLS methods, by vectorizing the problem
 ⇒ leads to a huge NNLS problem, too expensive to solve
- Our contribution: dedicated algorithm, divide and conquer

$$\min_{\mathbf{x}\geq 0} \begin{cases} \|A\mathbf{x} - b\|_2^2\\ \|\mathbf{x}\|_0 \end{cases}$$

Equivalent to
$$\min_{x\geq 0} ||Ax - b||_2^2$$
 s.t. $||x||_0 \leq k$ for all $k \in \{0, \dots, r\}$

Bi-objective sparse NNLS — Pareto front

Example for r = 5



Algorithm Salmon¹:

- 1. Generate a set of solutions for every column of X, with different tradeoffs between reconstruction error and sparsity
 - Divide the sparse MNNLS problem into *n* biobjective sparse NNLS subproblems

$$\min_{X(:,j)\geq 0} \{ \|B(:,j) - AX(:,j)\|_2^2 , \|X(:,j)\|_0 \}$$

- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C

¹Salmon Applies ℓ_0 -constraints Matrix-wise On NNLS problems

- Each row = one sparsity level
- Each column = one column of the MNNLS problem

$$\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}$$

 $C(i,j) \approx \min_{x\geq 0} \|B(:,j) - Ax\|_2^2 \text{ s.t. } \|x\|_0 \leq i$

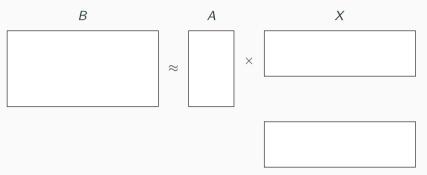
Algorithm Salmon²:

- 1. Generate a set of solutions for every column of X, with different tradeoffs between reconstruction error and sparsity
 - Divide the sparse MNNLS problem into *n* biobjective sparse NNLS subproblems

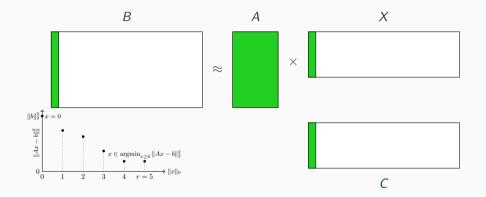
$$\min_{X(:,j)\geq 0} \{ \|B(:,j) - AX(:,j)\|_2^2 , \|X(:,j)\|_0 \}$$

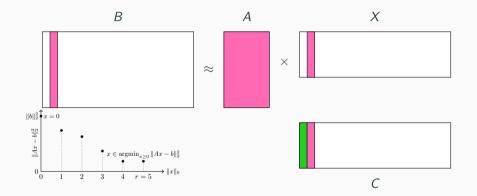
- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C
- 2. Select one solution per column such that in total X has q nonzero entries and the error is minimized \Rightarrow assignment-like problem
 - Dedicated greedy algorithm proved near-optimal

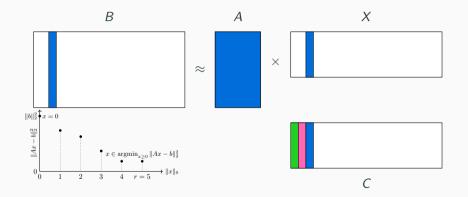
 $^{^2} Salmon$ Applies $\ell_0\text{-constraints}$ Matrix-wise On NNLS problems

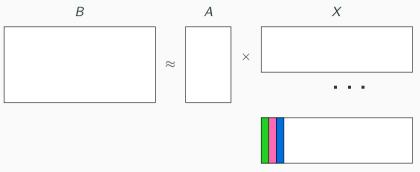


С

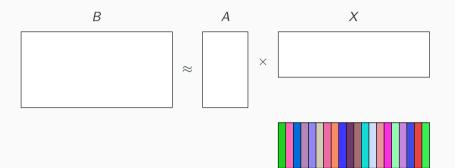






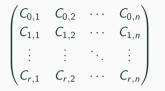


С



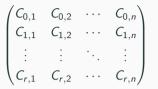
С

Salmon — Step 2: Select one solution per column



with
$$C(i,j) \approx \min_{x\geq 0} \|B(:,j) - Ax\|_2^2$$
 s.t. $\|x\|_0 \leq i$

Salmon — Step 2: Select one solution per column



with
$$C(i,j) \approx \min_{x \ge 0} \|B(:,j) - Ax\|_2^2$$
 s.t. $\|x\|_0 \le i$

Similar to an assignment problem

Let $z_{i,j} \in \{0,1\}$ such that $z_{i,j} = 1$ if and only if the *j*th column of X is *i*-sparse,

$$\begin{split} \min_{z\in\{0,1\}^{r\times n}} \sum_{i,j} z_{i,j} C(i,j) \\ \text{such that } \sum_i z_{i,j} = 1 \text{ for all } j, \text{ and } \sum_{i,j} i \, z_{i,j} \leq q \end{split}$$

Solved with a dedicated greedy algorithm, fast but proved near-optimal

In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

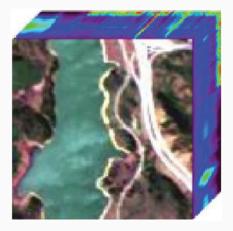
In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

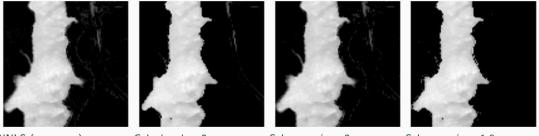
- The objective function is separable by columns
- At each iteration, we maximize the global decrease in error

Exp: Unmixing of the hyperspectral image Jasper Ridge



Exp: Unmixing of the hyperspectral image Jasper Ridge (r = 4)

Using homotopy in step 1. We show only one material (row of X reshaped) corresp. to water.



NNLS (no sparse) Error = 5.71% Actual sparsity = 2.27

Col-wise, k = 2Error = 6.99% Actual sparsity = 1.78

Salmon, q/n = 2Error = 5.72%

Salmon, q/n = 1.8Error = 5.95%

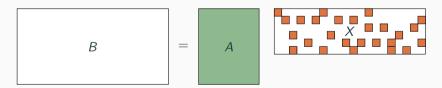
- We introduced a sparse MNNLS model with matrix-wise ℓ_0 -sparsity constraint
- We developed a two-step algorithm to tackle it
- Makes tractable some problems that are too big for standard NNLS solvers
- Improves results, allows a finer parameter tuning
- Interesting where sparsity varies between columns

Matrix-wise ℓ_0 -constrained Sparse Nonnegative Least Squares Nicolas Nadisic, Jeremy E Cohen, Arnaud Vandaele, Nicolas Gillis

Contact:

nicolas.nadisic@ugent.be

Paper and code: http://nicolasnadisic.xyz



Back-up slides

w

$$\min_{H \ge 0} \|M - WH\|_2^2 \text{ s.t. } \|H\|_0 \le q$$

$$\Rightarrow \text{ vectorize}$$

$$\min_{h \ge 0} \|m - \Omega h\|_2^2 \text{ s.t. } \|h\|_0 \le q$$
where $\Omega = W \otimes I \in \mathbb{R}^{(m.n) \times (r.n)}$ and $m = \begin{bmatrix} M(:, 1) \\ M(:, 2) \\ \vdots \\ M(:, n) \end{bmatrix} \in \mathbb{R}^{(m.n)}$

Experiments — Computing time, error

		AS	$\ell_1\text{-}CD$	Hcw	H+S	OGcw	OGg	OG+S	ARBOcw	ARBO+S
<i>k</i> = 3	Sparsity	3.45	3	2.86	2.99	2.7	3	3	2.76	3
Jasper	Time	0.34	0.22	0.38	0.48	0.39	6.08	1.12	1.21	1.93
<i>r</i> = 4	Error	5.71	5.72	6.99	5.72*	7.49	5.76	5.73	6.18	5.71*
k = 2	Sparsity	2.27	2	1.78	1.99	1.72	2	2	1.78	2
Jasper	Time	-	0.18	-	0.44	-	5.26	1.15	-	1.7
<i>r</i> = 4	Error	-	7.87	-	5.95^{*}	-	6.06	5.77*	-	5.74*
q/n = 1.8	Sparsity	-	1.8	-	1.79	-	1.8	1.8	-	1.8
Samson	Time	0.22	0.24	0.2	0.26	0.31	3.67	0.57	0.52	0.8
<i>r</i> = 3	Error	3.3	3.3	3.34	3.3*	6.76	3.32	3.3*	3.4	3.3*
k = 2	Sparsity	2.2	2	1.85	2	1.6	1.99	1.99	1.83	2
Urban	Time	5.08	4.31	4.86	7.79	3.38	958	16.4	33.5	73.1
<i>r</i> = 6	Error	7.67	8.13	8.62	7.83*	8.97	8.07	7.76*	8.27	7.71*
k = 2	Sparsity	2.63	2	1.9	2	1.7	2	2	1.83	2
Cuprite	Time	5.19	3.32	7.86	10.1	5.06	620	31.5	784	4829
r = 12	Error	1.74	3.17	2.37	2.01	2.32	1.97	1.89*	1.93	1.83*
k = 4	Sparsity	6.61	4	3.92	4	3.53	4	4	3.81	4

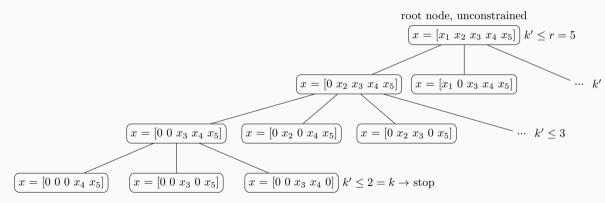
Let us focus on the one-column problem for now,

$$\min_{\mathbf{x} \ge 0} \|A\mathbf{x} - b\|_2^2 \text{ s.t. } \|\mathbf{x}\|_0 \le k$$

- Reduces to finding the support of x (set of non-zero entries)
- Combinatorial problem, $\binom{r}{k}$ possible supports
- Can be solved approximately by greedy algorithms
- Or optimally with branch-and-bound algorithms

A branch-and-bound algorithm for *k*-sparse NNLS

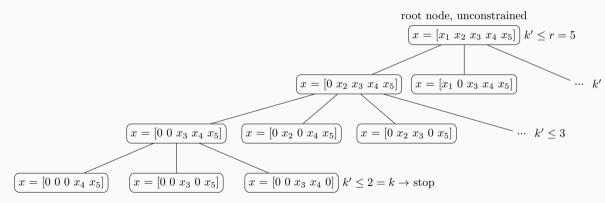
Example for r = 5 and k = 2



Able to prune large parts of the search space.

Extension of the branch-and-bound algorithm

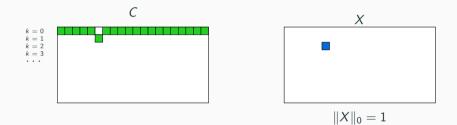
Example for r = 5 and k = 2

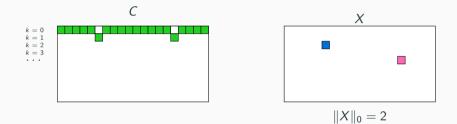


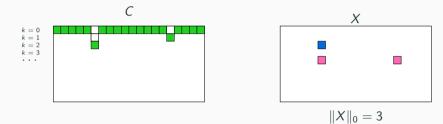
Computes the whole Pareto front!

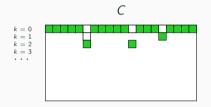
How to leverage this bi-objective formulation on a multicolumn problem?

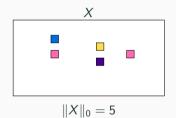
$$\min_{X>0} \|B - AX\|_F^2$$

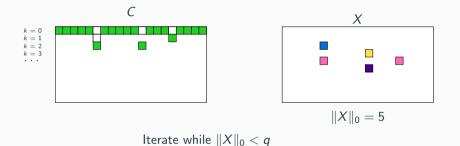


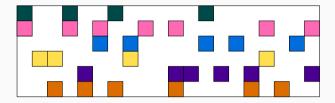












Final solution X, q-sparse matrix

$$Xpprox rgmin_{X\ge 0}\|B-AX\|_F^2$$
 s.t. $\|X\|_0\le q$