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Our motivations

e Approximate data points as linear combinations of a few features
selected from an overcomplete dictionary.

e In the standard (N)MF setting with
X ~ WH,
it means the columns of W are a subset of some fixed dictionary,

W =D(,J).
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Example: hyperspectral unmixing
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o f =2 . o
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e Select endmembers spectral signatures in a overcomplete dictionary.

e Dictionary can be a library of spectra (eg USGS).

e Using the input X as a self-dictionary reduces to pure-pixel search or
separable NMF.
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Simultaneous Sparse Coding (SSC)

Given

e an input matrix X € R™*",
e an overcomplete dictionary D € R™**,

e and a sparsity target r € N,

find H € R®*",

Simultaneous Sparse Coding (SSC)

mHin |IX = DH||Z st. ||H|lowo <,

where ||H||;ow—0 = [{i|H(i,:) # 0} is the number of non-zero rows of H.
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Simultaneous Sparse Coding (SSC)

(SSC) min || X — DH|Z st. ||H|lrow_o <1

SSC < Find H with at most r non-zero rows.

< Select the best r columns of D to reconstruct X.
X D H
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Existing works and limitations

SSC is a combinatorial problem, hard to solve up to global optimality.
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Existing works and limitations

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

e Convex relaxation, eg group LASSO with /5 1 penalty, >, [|H(i,:)|

2,

e Greedy algorithms, mostly variants of orthogonal matching pursuit
(OMP).

Issue: condition for exact recovery are restrictive and virtually never met
in practice.
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Our proposal: global optimization

Motivations:

e |n somes critical cases, we need guarantees on the solution.

e The acquisition of hyperspectral images is long and expensive, why
not spend more time/energy on their analysis?
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Our proposal: global optimization

Motivations:

e |n somes critical cases, we need guarantees on the solution.

e The acquisition of hyperspectral images is long and expensive, why
not spend more time/energy on their analysis?

The sparsity constraint is actually a classical cardinality constraint,
standard in combinatorial optimization. Can we tackle SSC with a
generic solver?

We first need to reformulate SSC in a standard problem form.
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Reformulation as a Mixed-Integer Program (MIP)

Let the binary vector y € {0, 1}° represents the row-sparsity of H,

yi=0< H(i,:) =0 for all /. (1)
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Reformulation as a Mixed-Integer Program (MIP)

Let the binary vector y € {0, 1}° represents the row-sparsity of H,
yi=0< H(i,:) =0 for all /. (1)
Then the row-0 “norm” can be written as a sum,

||HHFOW70 — Zy,‘,
i

and (1) can be rewritten as a linear constraint using a big-M constant,

—My; < H(i,j) < My; for all i,j.
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Reformulation as a Mixed-Integer Program (MIP)

The SSC problem can be reformulated with continuous and binary
variables, a quadratic objective, and linear constraints = MIQP:

min > H(:.j)T DT DH(:.J) = 2X (/) DH:. )

ot 4 ~Myi<H(ij) < My; for all i, j,
o Yyisr.
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Reformulation as a Mixed-Integer Program (MIP)

The SSC problem can be reformulated with continuous and binary
variables, a quadratic objective, and linear constraints = MIQP:

min > H(:.j)T DT DH(:.J) = 2X (/) DH:. )

ot 0 < H(i,j) < My; for all i, j,
- Z,‘)’i <r.

Adding nonnegativity is easy!
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Solving this MIQP in Gurobi: experiment

Number of columns in dictionary s varies, r =4, n = 2s
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How to scale up?

Reduce the size of the dataset by removing the least useful columns using
heuristics for SSC.

Intuition: if we want the 10 best columns, running a heuristic to extract
30 columns may return the 10 best ones + 20 other.
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How to scale up?

Reduce the size of the dataset by removing the least useful columns using
heuristics for SSC.

Intuition: if we want the 10 best columns, running a heuristic to extract
30 columns may return the 10 best ones + 20 other.
Hybrid method for SSC:

1. H < heuristic(D,X,r')
2. J «{i|H'(i,:) # 0}
3. H* < argming 4|, _o<r X — D(:, J)H||%
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Experiments with hybrid method — recovery of columns
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Experiments with hybrid method — reconstruction error
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Experiments with hybrid method — computing time
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Experiments with hybrid method — real-world hyperspectral

unmixing

We perform Non-Negative SSC with self-dictionary (D = X) using our
hybrid method on real-world hyperspectral images.
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Experiments with hybrid method — real-world hyperspectral

unmixing

We perform Non-Negative SSC with self-dictionary (D = X) using our
hybrid method on real-world hyperspectral images.

As a pre-processing heuristic, we use here the clustering-based algorithm
H2NMF
We compare our results with two methods:

e FGNSR , an algorithm based on convex relaxation for NSSC
e NMFdico , a greedy algorithm for NSSC.
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Experiments with hybrid method — real-world hyperspectral

unmixing

After selecting the subset X(:,J) of r columns of X, the computation of
matrix H is a standard nonnegative least squares (NNLS) problem and
we solve it using a block coordinate descent.
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Experiments with hybrid method — real-world hyperspectral

unmixing

After selecting the subset X(:,J) of r columns of X, the computation of
matrix H is a standard nonnegative least squares (NNLS) problem and
we solve it using a block coordinate descent.

To evaluate the computed solutions without knowing the ground-truth

. . . X—=X(,NA
solution, we measure the relative reconstruction error % .
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Experiments with hybrid method — real-world hyperspectral

unmixing

Results of the unmixing of real-world hyperspectral images. Time is in seconds,

error is the relative reconstruction error in percents. Bold numbers correspond
to our hybrid method using H2NMF as a pre-processing heuristic.

Data San Diego | Urban | Terrain | Samson
r 8 6 5 3
r' 80 60 50 30
Time FGNSR 0.04 0.03 0.03 0.01
NMFdico 0.01 0.01 0.02 0.01
Ours (Alg. 1) | 83.6 7.76 1.21 0.64
Error  FGNSR 9.21 6.03 3.73 3.48
NMFdico 9.05 6.03 3.52 3.2
Ours (Alg. 1) | 8.35 4.27 3.32 3.06
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Conclusion

SSC

ml_iln IX —DH||%2 st ||H|lrow—o <r.

e We reformulated SSC as a MIQP, solvable globally by generic
solvers.

e Doable for medium-size data, but does not scale well.

e Handle larger data sets with a hybrid method, using heuristics as a
preprocess to pre-select columns and reduce the size of the data set.
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e leverage the strong structure of the cardinality-constrained problem,
to which MIP solvers are mostly indifferent.
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e leverage the strong structure of the cardinality-constrained problem,
to which MIP solvers are mostly indifferent.
e A branch-and-bound algorithm to solve SSC globally?
e Key challenges:
e Find a relaxation that is cheap to compute and allows for efficient

pruning;
e Find a way to solve efficiently the subproblems.
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Thanks!

Contact: alexandra.dache@student.umons.ac.be
Code: https://gitlab.com/Alexial305/SSC

Presentation based on the article :

Alexandra Dache, Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis
(2023). Exact and Heuristic Methods for Simultaneous Sparse Coding.
EUSIPCO 2023.
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