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Our motivations

• Approximate data points as linear combinations of a few features

selected from an overcomplete dictionary.

• In the standard (N)MF setting with

X ≈WĤ,

it means the columns of W are a subset of some fixed dictionary,

W = D(:,J ).
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Example: hyperspectral unmixing

X (:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈ W (:, p)︸ ︷︷ ︸
spectral signature of

p-th material

Ĥ(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

• Select endmembers spectral signatures in a overcomplete dictionary.

• Dictionary can be a library of spectra (eg USGS).

• Using the input X as a self-dictionary reduces to pure-pixel search or

separable NMF.
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Simultaneous Sparse Coding (SSC)

Given

• an input matrix X ∈ Rm×n,

• an overcomplete dictionary D ∈ Rm×s ,

• and a sparsity target r ∈ N,

find H ∈ Rs×n,

Simultaneous Sparse Coding (SSC)

min
H
∥X − DH∥2F s.t. ∥H∥row−0 ≤ r ,

where ∥H∥row−0 = |{i |H(i , :) ̸= 0}| is the number of non-zero rows of H.
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Simultaneous Sparse Coding (SSC)

(SSC) min
H
∥X − DH∥2F s.t. ∥H∥row−0 ≤ r .

SSC ⇔ Find H with at most r non-zero rows.

⇔ Select the best r columns of D to reconstruct X .

X

≈

D

×

H
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Existing works and limitations

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

• Convex relaxation, eg group LASSO with ℓ2,1 penalty,
∑

i ∥H(i , :)∥2,
• Greedy algorithms, mostly variants of orthogonal matching pursuit

(OMP).

Issue: condition for exact recovery are restrictive and virtually never met

in practice.

6/20



Existing works and limitations

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

• Convex relaxation, eg group LASSO with ℓ2,1 penalty,
∑

i ∥H(i , :)∥2,
• Greedy algorithms, mostly variants of orthogonal matching pursuit

(OMP).

Issue: condition for exact recovery are restrictive and virtually never met

in practice.

6/20



Existing works and limitations

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

• Convex relaxation, eg group LASSO with ℓ2,1 penalty,
∑

i ∥H(i , :)∥2,
• Greedy algorithms, mostly variants of orthogonal matching pursuit

(OMP).

Issue: condition for exact recovery are restrictive and virtually never met

in practice.

6/20



Our proposal: global optimization

Motivations:

• In somes critical cases, we need guarantees on the solution.

• The acquisition of hyperspectral images is long and expensive, why

not spend more time/energy on their analysis?

The sparsity constraint is actually a classical cardinality constraint,

standard in combinatorial optimization. Can we tackle SSC with a

generic solver?

We first need to reformulate SSC in a standard problem form.
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Reformulation as a Mixed-Integer Program (MIP)

Let the binary vector y ∈ {0, 1}s represents the row-sparsity of H,

yi = 0⇔ H(i , :) = 0 for all i . (1)

Then the row-0 “norm” can be written as a sum,

∥H∥row−0 =
∑
i

yi ,

and (1) can be rewritten as a linear constraint using a big-M constant,

−Myi ≤ H(i , j) ≤ Myi for all i , j .
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Reformulation as a Mixed-Integer Program (MIP)

The SSC problem can be reformulated with continuous and binary

variables, a quadratic objective, and linear constraints ⇒ MIQP:

min
H

∑
j

H(:, j)TDTDH(:, j)− 2X (:, j)TDH(:, j)

s.t.

{
−Myi ≤ H(i , j) ≤ Myi for all i , j ,∑

i yi ≤ r .

Adding nonnegativity is easy!

9/20



Reformulation as a Mixed-Integer Program (MIP)

The SSC problem can be reformulated with continuous and binary

variables, a quadratic objective, and linear constraints ⇒ MIQP:

min
H

∑
j

H(:, j)TDTDH(:, j)− 2X (:, j)TDH(:, j)

s.t.

{
−Myi ≤ H(i , j) ≤ Myi for all i , j ,∑

i yi ≤ r .

Adding nonnegativity is easy!

9/20



Reformulation as a Mixed-Integer Program (MIP)

The SSC problem can be reformulated with continuous and binary

variables, a quadratic objective, and linear constraints ⇒ MIQP:

min
H

∑
j

H(:, j)TDTDH(:, j)− 2X (:, j)TDH(:, j)

s.t.

{
0 ≤ H(i , j) ≤ Myi for all i , j ,∑

i yi ≤ r .

Adding nonnegativity is easy!

9/20



Solving this MIQP in Gurobi: experiment

Number of columns in dictionary s varies, r = 4, n = 2s
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How to scale up?

Reduce the size of the dataset by removing the least useful columns using

heuristics for SSC.

Intuition: if we want the 10 best columns, running a heuristic to extract

30 columns may return the 10 best ones + 20 other.

Hybrid method for SSC:

1. H ′ ← heuristic(D,X ,r ′)

2. J ′ ← {i |H ′(i , :) ̸= 0}
3. H∗ ← argminH,∥H∥row−0≤r ∥X − D(:, J ′)H∥2F
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Experiments with hybrid method — recovery of columns
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Experiments with hybrid method — reconstruction error
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Experiments with hybrid method — computing time
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Experiments with hybrid method — real-world hyperspectral

unmixing

We perform Non-Negative SSC with self-dictionary (D = X ) using our

hybrid method on real-world hyperspectral images.

As a pre-processing heuristic, we use here the clustering-based algorithm

H2NMF

We compare our results with two methods:

• FGNSR , an algorithm based on convex relaxation for NSSC

• NMFdico , a greedy algorithm for NSSC.
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Experiments with hybrid method — real-world hyperspectral

unmixing

After selecting the subset X (:, J) of r columns of X , the computation of

matrix Ĥ is a standard nonnegative least squares (NNLS) problem and

we solve it using a block coordinate descent.

To evaluate the computed solutions without knowing the ground-truth

solution, we measure the relative reconstruction error ∥X−X (:,J)Ĥ∥F

∥X∥F
.
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Experiments with hybrid method — real-world hyperspectral

unmixing

Results of the unmixing of real-world hyperspectral images. Time is in seconds,

error is the relative reconstruction error in percents. Bold numbers correspond

to our hybrid method using H2NMF as a pre-processing heuristic.

Data San Diego Urban Terrain Samson

r 8 6 5 3

r’ 80 60 50 30

Time FGNSR 0.04 0.03 0.03 0.01

NMFdico 0.01 0.01 0.02 0.01

Ours (Alg. 1) 83.6 7.76 1.21 0.64

Error FGNSR 9.21 6.03 3.73 3.48

NMFdico 9.05 6.03 3.52 3.2

Ours (Alg. 1) 8.35 4.27 3.32 3.06
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Conclusion

SSC

min
H
∥X − DH∥2F s.t. ∥H∥row−0 ≤ r .

• We reformulated SSC as a MIQP, solvable globally by generic

solvers.

• Doable for medium-size data, but does not scale well.

• Handle larger data sets with a hybrid method, using heuristics as a

preprocess to pre-select columns and reduce the size of the data set.
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Future work?

• Leverage the strong structure of the cardinality-constrained problem,

to which MIP solvers are mostly indifferent.

• A branch-and-bound algorithm to solve SSC globally?

• Key challenges:

• Find a relaxation that is cheap to compute and allows for efficient

pruning;

• Find a way to solve efficiently the subproblems.
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Thanks!
Contact: alexandra.dache@student.umons.ac.be

Code: https://gitlab.com/Alexia1305/SSC

Presentation based on the article :

Alexandra Dache, Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis

(2023). Exact and Heuristic Methods for Simultaneous Sparse Coding.

EUSIPCO 2023.
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