Exact and Heuristic Methods for Simultaneous Sparse Coding

Application to dictionary-based NMF

<u>Alexandra Dache</u>¹, Nicolas Nadisic², Arnaud Vandaele¹, Nicolas Gillis¹ EUSIPCO 2023

¹University of Mons, Belgium ²Ghent University, Belgium

- Approximate data points as linear combinations of a few features selected from an overcomplete dictionary.
- In the standard (N)MF setting with

 $X \approx W\hat{H},$

it means the columns of W are a subset of some fixed dictionary,

 $W = D(:, \mathcal{J}).$

Example: hyperspectral unmixing

- Select endmembers spectral signatures in a overcomplete dictionary.
- Dictionary can be a library of spectra (eg USGS).
- Using the input X as a self-dictionary reduces to pure-pixel search or separable NMF.

Given

- an input matrix $X \in \mathbb{R}^{m \times n}$,
- an overcomplete dictionary $D \in \mathbb{R}^{m imes s}$,
- and a sparsity target $r \in \mathbb{N}$,

find $H \in \mathbb{R}^{s \times n}$,

Simultaneous Sparse Coding (SSC)

$$\min_{\boldsymbol{H}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{H}\|_{F}^{2} \quad \text{s.t.} \quad \|\boldsymbol{H}\|_{row-0} \leq r,$$

where $||H||_{row-0} = |\{i|H(i,:) \neq 0\}|$ is the number of non-zero rows of H.

Simultaneous Sparse Coding (SSC)

(SSC)
$$\min_{H} ||X - DH||_{F}^{2}$$
 s.t. $||H||_{row-0} \le r$.

SSC \Leftrightarrow Find *H* with at most *r* non-zero rows.

 \Leftrightarrow Select the best *r* columns of *D* to reconstruct *X*.

SSC is a combinatorial problem, hard to solve up to global optimality.

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

- Convex relaxation, eg group LASSO with $\ell_{2,1}$ penalty, $\sum_i \|H(i,:)\|_2$,
- Greedy algorithms, mostly variants of orthogonal matching pursuit (OMP).

SSC is a combinatorial problem, hard to solve up to global optimality.

Existing methods rely on fast but approximate heuristics:

- Convex relaxation, eg group LASSO with $\ell_{2,1}$ penalty, $\sum_{i} \|H(i,:)\|_{2}$,
- Greedy algorithms, mostly variants of orthogonal matching pursuit (OMP).

Issue: condition for exact recovery are restrictive and virtually never met in practice.

Motivations:

- In somes critical cases, we need guarantees on the solution.
- The acquisition of hyperspectral images is long and expensive, why not spend more time/energy on their analysis?

Motivations:

- In somes critical cases, we need guarantees on the solution.
- The acquisition of hyperspectral images is long and expensive, why not spend more time/energy on their analysis?

The sparsity constraint is actually a classical cardinality constraint, standard in combinatorial optimization. Can we tackle SSC with a generic solver?

Motivations:

- In somes critical cases, we need guarantees on the solution.
- The acquisition of hyperspectral images is long and expensive, why not spend more time/energy on their analysis?

The sparsity constraint is actually a classical cardinality constraint, standard in combinatorial optimization. Can we tackle SSC with a generic solver?

We first need to reformulate SSC in a standard problem form.

Let the binary vector $y \in \{0,1\}^s$ represents the row-sparsity of H,

$$y_i = 0 \Leftrightarrow H(i, :) = 0$$
 for all i . (1)

Let the binary vector $y \in \{0,1\}^s$ represents the row-sparsity of H,

$$y_i = 0 \Leftrightarrow H(i, :) = 0$$
 for all i . (1)

Then the row-0 "norm" can be written as a sum,

$$\|H\|_{row-0}=\sum_i y_i,$$

Let the binary vector $y \in \{0,1\}^s$ represents the row-sparsity of H,

$$y_i = 0 \Leftrightarrow H(i, :) = 0$$
 for all i . (1)

Then the row-0 "norm" can be written as a sum,

$$\|H\|_{row-0}=\sum_i y_i,$$

and (1) can be rewritten as a linear constraint using a big-M constant,

 $-My_i \leq H(i,j) \leq My_i$ for all i,j.

The SSC problem can be reformulated with continuous and binary variables, a quadratic objective, and linear constraints \Rightarrow MIQP:

$$\begin{split} \min_{H} \sum_{j} H(:,j)^{T} D^{T} D H(:,j) - 2X(:,j)^{T} D H(:,j) \\ \text{s.t.} & \begin{cases} -My_{i} \leq H(i,j) \leq My_{i} \text{ for all } i,j, \\ \sum_{i} y_{i} \leq r. \end{cases} \end{split}$$

The SSC problem can be reformulated with continuous and binary variables, a quadratic objective, and linear constraints \Rightarrow MIQP:

$$\begin{split} \min_{H} \sum_{j} H(:,j)^{T} D^{T} D H(:,j) - 2X(:,j)^{T} D H(:,j) \\ \text{s.t.} & \begin{cases} -My_{i} \leq H(i,j) \leq My_{i} \text{ for all } i,j, \\ \sum_{i} y_{i} \leq r. \end{cases} \end{split}$$

Adding nonnegativity is easy!

The SSC problem can be reformulated with continuous and binary variables, a quadratic objective, and linear constraints \Rightarrow MIQP:

$$\begin{split} \min_{H} \sum_{j} H(:,j)^{T} D^{T} D H(:,j) - 2X(:,j)^{T} D H(:,j) \\ \text{s.t.} &\begin{cases} 0 \le H(i,j) \le M y_{i} \text{ for all } i,j, \\ \sum_{i} y_{i} \le r. \end{cases} \end{split}$$

Adding nonnegativity is easy!

Solving this MIQP in Gurobi: experiment

Number of columns in dictionary *s* varies, r = 4, n = 2s

Reduce the size of the dataset by removing the least useful columns using heuristics for SSC.

Intuition: if we want the 10 best columns, running a heuristic to extract 30 columns may return the 10 best ones + 20 other.

Reduce the size of the dataset by removing the least useful columns using heuristics for SSC.

Intuition: if we want the 10 best columns, running a heuristic to extract 30 columns may return the 10 best ones + 20 other.

Hybrid method for SSC:

1. $H' \leftarrow \text{heuristic}(D, X, r')$ 2. $J' \leftarrow \{i | H'(i, :) \neq 0\}$ 3. $H^* \leftarrow \text{argmin}_{H, ||H||_{row-0} \leq r} ||X - D(:, J')H||_F^2$

Experiments with hybrid method — recovery of columns

Experiments with hybrid method — reconstruction error

Experiments with hybrid method — computing time

Experiments with hybrid method — real-world hyperspectral unmixing

We perform Non-Negative SSC with self-dictionary (D = X) using our hybrid method on real-world hyperspectral images.

We perform Non-Negative SSC with self-dictionary (D = X) using our hybrid method on real-world hyperspectral images.

As a pre-processing heuristic, we use here the clustering-based algorithm $\ensuremath{\mathsf{H2NMF}}$

We compare our results with two methods:

- $\bullet~\mbox{FGNSR}$, an algorithm based on convex relaxation for NSSC
- NMFdico , a greedy algorithm for NSSC.

Experiments with hybrid method — real-world hyperspectral unmixing

After selecting the subset X(:, J) of r columns of X, the computation of matrix \hat{H} is a standard nonnegative least squares (NNLS) problem and we solve it using a block coordinate descent.

After selecting the subset X(:, J) of r columns of X, the computation of matrix \hat{H} is a standard nonnegative least squares (NNLS) problem and we solve it using a block coordinate descent.

To evaluate the computed solutions without knowing the ground-truth solution, we measure the relative reconstruction error $\frac{||X-X(:,J)\hat{H}||_F}{||X||_F}$.

Experiments with hybrid method — real-world hyperspectral unmixing

Results of the unmixing of real-world hyperspectral images. Time is in seconds, error is the relative reconstruction error in percents. Bold numbers correspond to our hybrid method using H2NMF as a pre-processing heuristic.

	Data	San Diego	Urban	Terrain	Samson
	r	8	6	5	3
	r'	80	60	50	30
Time	FGNSR	0.04	0.03	0.03	0.01
	NMFdico	0.01	0.01	0.02	0.01
	Ours (Alg. 1)	83.6	7.76	1.21	0.64
Error	FGNSR	9.21	6.03	3.73	3.48
	NMFdico	9.05	6.03	3.52	3.2
	Ours (Alg. 1)	8.35	4.27	3.32	3.06

SSC

$$\min_{\boldsymbol{\mu}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{H}\|_{F}^{2} \quad \text{s.t.} \quad \|\boldsymbol{H}\|_{row-0} \leq r.$$

- We reformulated SSC as a MIQP, solvable globally by generic solvers.
- Doable for medium-size data, but does not scale well.
- Handle larger data sets with a hybrid method, using heuristics as a preprocess to pre-select columns and reduce the size of the data set.

• Leverage the strong structure of the cardinality-constrained problem, to which MIP solvers are mostly indifferent.

- Leverage the strong structure of the cardinality-constrained problem, to which MIP solvers are mostly indifferent.
- A branch-and-bound algorithm to solve SSC globally?

- Leverage the strong structure of the cardinality-constrained problem, to which MIP solvers are mostly indifferent.
- A branch-and-bound algorithm to solve SSC globally?
- Key challenges:
 - Find a relaxation that is cheap to compute and allows for efficient pruning;
 - Find a way to solve efficiently the subproblems.

Thanks!

Contact: alexandra.dache@student.umons.ac.be

Code: https://gitlab.com/Alexia1305/SSC

Presentation based on the article :

Alexandra Dache, Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis (2023). Exact and Heuristic Methods for Simultaneous Sparse Coding. EUSIPCO 2023.

