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Introduction — NMF and
separability



Our motivation

High-level motivations of this work:

• Extract underlying structures in data
• Better leverage a priori knowledge, notably nonnegativity,

separability, and sparsity, to improve models
• Develop algorithms that are both guaranteed and computationally

tractable
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Starting point: Nonnegative matrix factorization (NMF)

Given B ∈ Rm×n
+ and r ∈ N, find A ∈ Rm×r

+ , and X ∈ Rr×n
+ such that

B ≈ AX.

In practice, a common formulation is

Frobenius NMF

min
A≥0,X≥0

∥B − AX∥2
F

• Columns of A are features
• Columns of B are data points that can be expressed as additive

linear combinations of features
• Entries of X represent the weight of each feature in each data point
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Why nonnegativity?

• More interpretable factors (part-based representation)
• Naturally favors sparsity
• Is natural in many applications (image processing, hyperspectral

unmixing, text mining, …)
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One application — Hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑

p
A(:, p)︸ ︷︷ ︸

spectral signature of
p-th material

X(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from J. Bioucas Dias and N. Gillis.
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Linear mixing model
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NMF Geometry (B ≈ AX)

Data points B(:, j)
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NMF Geometry (B ≈ AX): cone / convex hull

Vertices A(:, p)

Data points B(:, j)

8/60



Application — Hyperspectral unmixing

Grass

Rooftop Trees

Materials A(:, p)

Pixels B(:, j)
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The separability assumption

For each vertex, there exist at least one data point equal/close to this
vertex
⇔ pure-pixel assumption

B

≈

A

×

X

⇔ There exists an index set J with |J | = r such that B ≈ B(:,J )X
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Geometry of separable NMF
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Separable NMF

• NMF is NP-hard in general (Vavasis 2010).
• Under the separability assumption, it’s solvable in polynomial time

(Arora et al. 2012).

Separable NMF is actually quite old

• Donoho and Stodden (2004) ⇒ term “separability”
• Boardman, Kruse, and Green (1995) ⇒ pure-pixel assumption in HSI
• Used since the 1970’s in chemometrics
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Overview of my PhD thesis

Nonnegative Matrix Factorization
min

A≥0,X≥0
∥B − AX∥2

F

Separable NMF, estimate A
under separability A = B(:,J )

Sparse MNNLS, estimate X
with A fixed,

min
X≥0

∥B − AX∥2
F s.t. X is sparse

Chapter 3:
Column-wise sparsity
∥X(:, j)∥0 ≤ k for all j

Chapter 3:
Biobjective sparse NNLS
min
x≥0

{∥Ax − b∥2
2, ∥x∥0}

Chapter 4: Matrix-wise
sparsity ∥X∥0 ≤ q

Chapter 5: Sparse
separable NMF

Chapter 2: Smoothed
separable NMF
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Sparse separable NMF



Sparse separable NMF

Presented in the article:

NN, Arnaud Vandaele, Jeremy E Cohen, and Nicolas Gillis (2020).
“Sparse separable nonnegative matrix factorization”. In: Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases (ECMLPKDD), pp. 335–350.

Why? No work handles the underdetermined case with interior ver-
tices, nor leverages sparsity

What? New model and exact algorithm for separable NMF with spar-
sity constraints, identifiability and complexity proofs
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Starting point 1/2 — Separable NMF

Separability:

• The vertices are selected among the data points
• In hyperspectral unmixing, equivalent to pure-pixel assumption

Standard NMF model
Separable NMF

B = AX
B = B(:,J )X
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Starting point 1/2 — Separable NMF

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Data points B(:, j)
Selected vertices A(:, p) = B(:, q)
Unit simplex

16/60



Algorithm for Separable NMF — SNPA

SNPA = Successive Nonnegative Projection Algorithm (Gillis 2014)

• Start with empty A, and residual R = B
• Alternate between

• Greedy selection of one column of R to be added to A
• Projection of R on the convex hull of the origin and columns of A

• Stop when reconstruction error = 0 (or < ϵ)

(Condition: columns of B have unit ℓ1-norm)
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SNPA
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SNPA
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SNPA
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SNPA
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A limitation of Separable NMF

What if one column of A is a combination of others columns of A?

Ex: multispectral unmixing with m < r

→ Interior vertex

Not identifiable by separable NMF, because it belongs to the convex hull
of the other vertices.
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A limitation of Separable NMF

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

Data points B(:, j)
Exterior vertices
Interior vertex
Unit simplex

20/60



Starting point 2/2 — k-sparsity

• B ≈ AX s.t. X is column-wise k-sparse
• Interpretation: a pixel expressed as a combination of at most k

materials

=B A
X

k-sparse nonnegative least squares (NNLS)

min
X≥0

∥B − AX∥2
F s.t. ∥X(:, j)∥0 ≤ k for all j
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Starting point 2/2 — k-sparsity (ex. with k = 2)
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Starting point 2/2 — k-sparsity

k-sparse NNLS is combinatorial, with
(r

k
)

possible combinations per
column of X.

Previous work: a branch-and-bound algorithm to solve exactly k-sparse
NNLS (NN, Vandaele, Gillis, et al. 2020).

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Ex. of the BnB algorithm with r = 5 and k = 2

23/60



Sparse Separable NMF

Standard NMF model

Separable NMF

Sparse sep NMF

B = AX

B = B(:,J )X

B = B(:,J )X s.t. for all j, ∥X(:, j)∥0 ≤ k

Our objective: handle situation separable NMF cannot, interior vertices
and underdetermined cases, using a prior sparsity knowledge.
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Our approach for SSNMF

Replace the projection step of SNPA, from projection on convex hull to
projection on k-sparse hull, done with our BnB solver ⇒ kSSNPA.

kSSNPA

• Identifies all interior vertices (non-selected points are never vertices)
• May also identify wrong vertices (explanation to come!)

⇒ kSSNPA can be seen as a screening technique to reduce the number
of points to check.
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Our approach for SSNMF

In a nutshell, 3 steps:

1. Identify exterior vertices with SNPA
2. Identify candidate interior vertices with kSSNPA
3. Discard bad candidates, those that are k-sparse combinations of

other selected points (they cannot be vertices)

Our algorithm: BRASSENS Relies on Assumptions of Sparsity and
Separability for Elegant NMF Solving.
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Brassens with sparsity k = 2
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Brassens with sparsity k = 2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

27/60



Complexity

• As opposed to Separable NMF, Sparse Separable NMF is NP-hard
(proof in the paper and thesis)

• Hardness comes from the k-sparse projection
• If k is a fixed constant, not NP-hard anymore

• Not too bad when r is small, with our BnB solver
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Correctness

Assumption 1 No column of A is a nonnegative linear combination of k
other columns of A.
⇒ necessary condition for recovery by Brassens

Assumption 2 No column of A is a nonnegative linear combination of k
other columns of B.
⇒ sufficient condition for recovery by Brassens

If data points are k-sparse and generated at random, Assumption 2 is
true with probability one.
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Experiments

• Experiments on synthetic datasets with interior vertices
• Experiment on underdetermined multispectral unmixing (Urban

image, 309 × 309 pixels, limited to m = 3 spectral bands, and we
search for r = 5 materials)

• No other algorithm can tackle SSNMF, so comparisons are limited
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XP Synthetic: 3 exterior and 2 interior vertices, n grows
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XP Synthetic 2: dimensions grow

m n r k Number of candidates Run time in seconds
3 25 5 2 5.5 0.26
4 30 6 3 8.5 3.30
5 35 7 4 9.5 38.71
6 40 8 5 13 395.88

Conclusion from experiments:

• kSSNPA is efficient to select few candidates
• Still, Brassens does not scale well :(
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XP on 3-bands Urban dataset with r = 5

SNPA

Grass+Trees
+Rooftops Rooftops 1 Dirt+Road

+Rooftops Dirt+Grass Rooftops 1
+Dirt+Road

BRASSENS (finds 1 interior point)

Grass+Trees Rooftops 1 Road Rooftops+Road Dirt+Grass
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Conclusion

Sparse Separable NMF, a new model that combine constraints of
separability and k-sparsity:

• Can handle some cases that Separable NMF cannot handle, such as
interior vertices in underdetermined problems

• We proved it is NP-hard (unlike Sep NMF), but actually “not so
hard” for small r

• It is provably solved by our algorithm Brassens under mild
assumptions

Limitations:

• Brassens does not scale well
• Theoretical results limited to the noiseless case
• Limited robustness to noise
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Smoothed separable NMF



Smoothed separable NMF

Presented in the article:

NN, Nicolas Gillis, and Christophe Kervazo (2021). “Smoothed separable
nonnegative matrix factorization”. In: preprint arXiv:2110.05528.

Why? Separable NMF is popular and powerful but algorithms do
not leverage the presence of multiple pure data points (only
one does so, and it has limitations)

What? Two smoothed separable NMF algorithms that outperform
the state of the art
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Model 1: Separable NMF (reminder)

Separability assumption
There exists an index set J with |J | = r such that

B = B(:,J )X + N
(where N is bounded noise)

Interpretation: for each vertex, there exist at least one data point equal
to this vertex ⇔ pure-pixel assumption

Algorithms: here we focus on two greedy algorithms

• VCA: Vertex Component Analysis (Nascimento et al. 2005)
• SPA: Successive Projection Algorithm (Araújo et al. 2001)
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VCA in a nutshell (Nascimento et al. 2005)

• Greedy selection of vertices
• Random orthogonal projections

Advantage: randomized algorithm, can be run several times to keep the
best solution
Issue: not provably robust to noise
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VCA — Animation
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SPA in a nutshell (Araújo et al. 2001)

• Similar to VCA
• Orthogonal projection with no randomness
• Selects the column of the residual with highest ℓ2-norm

Advantage: provably robust to noise (column-wise bounds for N)
Issue: deterministic
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Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)
Actual vertices A(:, j)
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Issues of Separable NMF: outliers, extreme points

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)
Actual vertices A(:, j)

Vertices identified with SepNMF
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Model 2: Proximal latent points (Bhattacharyya et al. 2020)

Proximal latent points assumption
There exists r index sets, Kk for k = 1, 2, . . . , r, of cardinality at least
p = δn such that

∥AX(:, j)− A(:, k)∥2 ≤ 4σ
δ

for all j ∈ Kk,

for some δ ∈
[ 1

n ,
1
r
]

and σ > 0
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Model 2: Proximal latent points (Bhattacharyya et al. 2020)

Interpretation: Each vertex has at least p data points close to it.

B

≈

A

×

X
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Model 2: Proximal latent points (Bhattacharyya et al. 2020)

• Assumption is stronger than separability, but it allows more noise,
and is realistic in practice.

• The proposed Algorithm to Learn a Latent Simplex (ALLS) has
practical issues.
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Proximal latent points in hyperspectral unmixing

B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑

p
A(:, p)︸ ︷︷ ︸

spectral signature of
p-th material

X(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from J. Bioucas Dias and N. Gillis.
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ALLS in a nutshell

• Similar to VCA
• Averages p data points instead of selecting one

Advantage:

• Probabilistic robustness to noise, depending on spectral norm of N
• More robust to outliers

Conceptually, ALLS is equivalent to applying VCA on the smoothed data
set consisting of the

(n
p
)

points which are the averages of all possible
combinations of p data points of B
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ALLS — Animation (p = 5)
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Advantage of the proximal latent points assumption

A(:, 1)

A(:, 2) A(:, 3)

Data points B(:, j)
Actual endmembers A(:, j)

Vertices identified with SepNMF
— with ALLS
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Issue of ALLS 1/2: absolute value (ex with p = 5)
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Issue of ALLS 1/2: absolute value (ex with p = 5)

Estimated vertex
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Issue of ALLS 1/2: absolute value (ex with p = 5)

Estimated vertex
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Issue of ALLS 2/2: mean aggregation (ex with p = 4)

Outlier
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Outlier

Estimated vertex
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Issue of ALLS 2/2: mean aggregation (ex with p = 4)

Outlier

Estimated vertex
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Our contribution

• Smoothed variants of algorithms VCA and SPA that leverage the
proximal latent points assumption ⇒ SVCA and SSPA

• Aggregates p data points to find each vertex
• Best of both worlds
• Empirically better than VCA, SPA, and ALLS
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Smoothed VCA (SVCA)

The best of both worlds!

Similar to ALLS, but:

• Instead of selecting the p entries maximizing the absolute value of
uk, we take the p indices maximizing (resp. minimizing) uk if the
median of the p largest values of uk is larger (resp. smaller) than the
absolute value of the median of the p smallest values of uk.

• Instead of the mean, we use the median to aggregate points

Robustness results of ALLS apply to SVCA!
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Smoothed SPA (SSPA)

Similar to SVCA, but we replace the random direction in the selection
step by the column of the residual P⊥B with maximum ℓ2-norm

Provably robust for p = 1 (SPA), we don’t know for p > 1
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Experiment: unmixing of hyperspectral image Urban

SPA

Smoothed SPA
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More experiments

See preprint :)
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Conclusion

• New assumption is stronger, but often true in real-world datasets
• Empirically, smoothed algorithms perform better than VCA, SPA,

and ALLS
• More robust to outliers and noise
• Good way to handle spectral variability?
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Future research

Algorithm:

• Strategy to find the best p automatically
• Different p for every endmember
• Other aggregation methods

Theory:

• Identifiability and uniqueness of solution
• Robustness to noise, recovery guarantees

56/60



References i

Vavasis, Stephen A. (2010). “On the Complexity of Nonnegative Matrix
Factorization”. In: SIAM Journal on Optimization 20.3, pp. 1364–1377.

Arora, Sanjeev, Rong Ge, Ravindran Kannan, and Ankur Moitra (2012).
“Computing a Nonnegative Matrix Factorization – Provably”. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory
of Computing. Association for Computing Machinery, pp. 145–162.

NN, Arnaud Vandaele, Jeremy E Cohen, and Nicolas Gillis (2020).
“Sparse separable nonnegative matrix factorization”. In: Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases (ECMLPKDD), pp. 335–350.

Gillis, Nicolas (2014). “Successive Nonnegative Projection Algorithm for
Robust Nonnegative Blind Source Separation”. In: SIAM Journal on
Imaging Sciences 7.2, pp. 1420–1450.

57/60



References ii

NN, Arnaud Vandaele, Nicolas Gillis, and Jeremy E Cohen (2020). “Exact
sparse nonnegative least squares”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5395–5399.

NN, Nicolas Gillis, and Christophe Kervazo (2021). “Smoothed separable
nonnegative matrix factorization”. In: preprint arXiv:2110.05528.

Nascimento, José MP and José M Bioucas-Dias (2005). “Vertex
component analysis: A fast algorithm to unmix hyperspectral data”. In:
IEEE Transactions on Geoscience and Remote Sensing 43.4,
pp. 898–910.

Araújo, U.M.C., B.T.C. Saldanha, R.K.H Galvão, T. Yoneyama,
H.C. Chame, and V. Visani (2001). “The successive projections
algorithm for variable selection in spectroscopic multicomponent
analysis”. In: Chemometrics and Intelligent Laboratory Systems 57.2,
pp. 65–73.

58/60



References iii

Bhattacharyya, Chiranjib and Ravindran Kannan (2020). “Finding a
latent k–simplex in O∗(k · nnz(data)) time via subset smoothing”. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, pp. 122–140.

59/60



Thanks!
Contact: nicolas.nadisic@ugent.be
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