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High-level motivations:

= Extract underlying structures in data

= Better leverage a priori knowledge, here nonnegativity and sparsity,
to improve models

= Develop algorithms that are both guaranteed and computationally

tractable
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Starting point: linear models

Focus of this work: linear models of the form

B~ AX,

where

= B e R™" is the data/input matrix, representing measures or
observations,

= A€ R™"is a coeficient matrix, called dictionary, representing

features, atoms, or components.
= X € R™" s a signal or information matrix,

= r< min(m,n)
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One application — Hyperspectral unmixin
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Images from Bioucas Dias and Nicolas Gillis.
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One application — Hyperspectral unmixing
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Images from Bioucas Dias and Nicolas Gillis.
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Linear mixing model
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Linear mixing model
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Nonnegativity constraint:

= Assumes data is generated from an additive linear combination of
features

= Natural in this application

= Produces more interpretable factors
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

2 _ 2
il 1B — AX||&
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

: _ 2
il 1B — AX||&

Can be divided in n independent NNLS subproblems,

in [|B(:, j) — AX(:, )||?
X(r}jj')goﬂ (:,)) ()5

& min||b— Ax|3
x>0
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Multiple Nonnegative Least Squares (MNNLS)

Given B and A, find X>0
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Sparsity — Why?

= Regularize the problem
= Better interpretability

= Natural in many applications = leverage a-priori knowledge to

improve the model
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Sparsity in hyperspectral unmixing

B(:,J) ~ A(:; p) X(p, J)
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Sparsity — How?

The classical way: /7 penalty
min | B — AXI[2 + AlIX]x
X>0

Issues:

= Restrictive condititions for support recovery

= Parameter )\ is hard to tune, no physical meaning
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Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint
(Lo-"norm”, [Ixljo = [{i: x; # 0}|)

; _ 2 Al < .
i 1B — AX||5 s.t. [|IX(:,))]lo < k for all j

Issue:

= What if the relevant k varies between column?
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Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
min || B — AX]|2 t. Xllo <
XZH(; | I st [Xlo<g

= Can be seen as a global sparsity budget

= If g = k x n, this enforces an average k-sparsity on the columns of X
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Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
min || B — AX]|2 t. Xllo <
XZH(; | I st [Xlo<g

= Can be seen as a global sparsity budget

= If g = k x n, this enforces an average k-sparsity on the columns of X
How to solve it?

= With a k-sparse NNLS methods, by vectorizing the problem
= leads to a huge NNLS problem, too expensive to solve

= Qur contribution: dedicated algorithm
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Vectorizing the MNNLS problem is expensive

in||M— WH|? s.t. [|H||og <
wzlgll 3 st |[Hllo <q

= vectorize
min ||m — QA2 s.t. ||Allg <
hgg ” Hz s.t |‘ HO >q

M(:,
where Q = W® I € RI™MX("n) and m = , e R(m-n)
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Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity
= Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

] 1B, J) — AXG5 Q)5 5 IXG)llo 3

= Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
= Build a cost matrix C

1Salmon Applies £p-constraints Matrix-wise On NNLS problems
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Our contribution: a two-step algorithm

Algorithm Salmon?:

1. Generate a set of solutions for every column of X, with different
tradeoffs between reconstruction error and sparsity

= Divide the sparse MNNLS problem into n biobjective sparse NNLS
subproblems

] 1B, J) — AXG5 Q)5 5 IXG)llo 3

= Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
= Build a cost matrix C

2. Select one solution per column such that in total X has g nonzero
entries and the error is minimized = assignment-like problem

= Dedicated greedy algorithm proved near-optimal

1Salmon Applies £p-constraints Matrix-wise On NNLS problems
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Salmon — Step 1: Bi-objective subproblem for one column

Ax — bl|3
| 1A b
20 | [Ixlo
Equivalent to m>i51 |b— Ax|)3 s.t. |[x|lo < kfor all ke {0,...,r}
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Salmon — Step 1: Pareto front

Example for r=1>5

I6]3éx =0

= )

|

X
=

o
(@)
x € argmin - [[Ax — blj3

0 : X
0 1 2 3 4 r=5 o
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Salmon — Step 1: Build the cost matrix C

= Each row = one sparsity level

= Each column = one column of the MNNLS problem

G G - CGon
Gi1 Gpo - G
Cr,l Cr,2 o Cr n

)

(i)~ mineo [|B(:,)) — Ax|l3 st. [|x]lo < i
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Salmon — Step 1: Generate Pareto fronts

%
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts

N l
~
b3z =0
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= ? = € argmin, . || Az — b[|3
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 2: Select one solution per column

Similar to an assignment problem

G G2 - CGon
Gi1 Ga2 - G
Cr,l Cr,2 e Crn

s

Let z;; € {0,1} such that z; =1 if and only if the jth column of X'is

i-sparse,
ZE{O,I}’X n

min ZZ,‘JC(I',J.)
ij

such that Zz,-’j =1 for all j, and Z izij<gq.
i ij
Solved with a dedicated greedy algorithm, fast but proved near-optimal
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Salmon — Step 2: Greedy selection

x> x x x
e

WN O

[Xllo =0
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Salmon — Step 2: Greedy selection
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Salmon — Step 2: Greedy selection

x> x x x
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Salmon — Step 2: Greedy selection

x> x x x
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Salmon — Step 2: Greedy selection

x> x x x
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Salmon — Step 2: Greedy selection

RN

HEEE
]
|

x> x x x

[Xllo=5
Iterate while || X|jo < g
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Salmon — Step 2: Greedy selection

L L

Final solution X, g-sparse matrix

Xm~argmin||[B—AX[E st [IXlo<q
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Near-optimality of the selection step (step 2)

In short:

= The worst case is not too bad (wrong support in at most one
column)

= In practice, often optimal (19 out of 22 cases in our xp)

22/26



Near-optimality of the selection step (step 2)

In short:

= The worst case is not too bad (wrong support in at most one
column)

= In practice, often optimal (19 out of 22 cases in our xp)
Intuition of the proof:

= The objective function is separable by columns

= At each iteration, we maximize the global decrease in error
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One experiment: unmixing of hyperspectral image Jasper
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One experiment: unmixing of hyperspectral image Jasper
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NNLS (no sparse) Col-wise, k=2
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Conclusion

= We introduced a sparse MNNLS model with matrix-wise {p-sparsity
constraint

= We developed a two-step algorithm to tackle it

= Makes tractable some problems that are too big for standard NNLS
solvers

= Improves results, allows a finer parameter tuning

= Interesting where sparsity varies between columns
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Thanks!

Contact: nicolas.nadisic@umons.ac.be

Paper and code:
http://nicolasnadisic.xyz

in|B—AX|F st. [ X]o<
i || EE | = (2 (o g
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