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Motivation: Nonnegative Matrix

Factorization (NMF)



Nonnegative Matrix Factorization (NMF)

Given

• Data matrix M ∈ Rm×n
+

• Rank r � min(m, n)

find

• W ∈ Rm×r
+

• and H ∈ Rr×n
+

such that M ≈WH.

In optimization terms, standard

NMF is equivalent to:

min
W≥0,H≥0

‖M −WH‖2
F
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Nonnegative Matrix Factorization (NMF)

Why nonnegativity?

• More interpretable factors (part-based representation)

• Naturally favors sparsity

• Is natural in many applications (image processing, hyperspectral

unmixing, text mining, . . . )

4/30



NMF Application — Hyperspectral Unmixing

M(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

W (:, p)︸ ︷︷ ︸
spectral signature of

p-th material

H(p, j)︸ ︷︷ ︸
abundance of p-th material

in j-th pixel

Images from Bioucas Dias and Nicolas Gillis.
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Our focus: sparse optimization of H

• NMF algo. usually rely on alternating optimization of W and H

(iteratively optimize one while fixing the other).

• Here we focus on the sparsity of H, but the concepts and algorithms

can be applied on W symmetrically.

=M W
H
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Multiple Nonnegative Least Squares (MNNLS)

The optimization of H

min
H≥0
‖M −WH‖2

F (1)

can be decomposed into n nonnegative least squares (NNLS) subproblems

min
x≥0
‖b − Ax‖2

2, (2)

where M(:, j), W , and H(:, j) correspond respectively to b, A, and x .
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Sparse Nonnegative Least

Squares (NNLS)



NNLS/NMF and sparsity

Nonnegativity naturally favors sparsity = factors with few nonzero

entries, but without guarantee.

It can be useful to enforce it explicitly, to:

• Further improve interpretability

• Leverage prior knowledge on sparsity

• Be able to impose an explicit user-defined level of sparsity
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Measuring sparsity

A natural measure: `0-“norm”

||x ||0 = |{i : xi 6= 0}| (number of nonzero entries of x)

Convex relaxation: `1-norm

||x ||1 =
n∑

i=1

|xi |
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`0 constraint for sparse NNLS/NMF

• With a `0-“norm” constraint, k-sparse NNLS

min
x≥0
‖b − Ax‖2

2 s.t. ‖x‖0 ≤ k

• in MNNLS/NMF, generally applied column-wise (or row-wise)

min
H≥0
‖M −WH‖2

F s.t. ∀j , ‖H(:, j)‖0 ≤ k

• Intuitive formulation: a pixel contains at most k materials
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Limitations

• Column-wise k-sparse MNNLS/NMF is usually satisfactory

• but setting k can be hard in some contexts, where sparsity is not the

same for all columns

• Ex: in hyperspectral unximing, the number of material differ

between pixels
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A matrix-wise constraint

Matrix-wise q-sparse MNNLS

min
H≥0
‖M −WH‖2

2 s.t. ‖H‖0 ≤ q

• Can be seen as a global sparsity budget

• If q = k × n, this enforces an average k-sparsity on the columns of H

How to solve it?

• With a k-sparse NNLS methods, by vectorizing the problem

• ⇒ leads to a huge NNLS problem, expensive to solve
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Vectorizing the MNNLS problem is expensive

min
H≥0
‖M −WH‖2

2 s.t. ‖H‖0 ≤ q

⇒ vectorize

min
h≥0
‖m − Ωh‖2

2 s.t. ‖h‖0 ≤ q

where Ω = W ⊗ I ∈ R(m.n)×(r .n) and m =


M(:, 1)

M(:, 2)
...

M(:, n)

 ∈ R(m.n)
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Our matrix-wise `0-constrained

method



A two-step algorithm

1. Generate a set of solutions for every column of H, with different

tradeoffs between reconstruction error and sparsity

• Divide the sparse MNNLS problem into n sparse NNLS subproblems

min
H(:,j)≥0

‖M(:, j)−WH(:, j)‖2
2 s.t. ‖H(:, j)‖o ≥ k

• For each column j , get the solutions for all k ∈ {1, . . . , r}

2. Select one solution per column such that, in total H has q nonzero

entries, and the error is minimized ⇒ assignment-like problem
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Illustration

=M W
H


C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n


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Step 1: Generate solution path

Example for one column for r = 5

0
‖x‖00

‖A
x
−

b
‖2 2

1 2 3 4 r = 5

x = 0‖b‖2
2

x ∈ argminx≥0 ‖Ax − b‖2
2

Solve min
x≥0
‖b − Ax‖2

2 s.t. ‖x‖0 ≤ k for all k ∈ {0, . . . , r}
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Step 1: Generate solution path

Algorithms:

• Homotopy (see eg Kim et al. 2013), heuristic based on `1 relaxation

• NNOMP, NNOLS (see eg Nguyen et al. 2019), greedy heuristics

• arborescent (Nadisic et al. 2020), exact branch-and-bound algorithm

NB: These are existing algorithms, not original contribution
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Step 2: Matrix-wise selection

Our contribution!

Select one solution per column to build a q-sparse matrix minimizing the

error

• We have to solve a kind of assignment problem.

• First, build a cost matrix

• each column represents a column H(:, j)

• each row represents a k-sparsity between 0 and r

• each entry is the error ‖M(:, j)−WH(:, j)‖2
2 of the k-sparse solution

of column j .

• Then, greedy-like selection algorithm, fast but proved exact
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Illustration

=M W
H


C0,1 C0,2 · · · C0,n

C1,1 C1,2 · · · C1,n

...
...

. . .
...

Cr ,1 Cr ,2 · · · Cr ,n


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Guarantees

• Matrix-wise selection (step 2) is optimal

• Path-generating step (step 1)

• Homotopy ⇒ heuristic, inexact but fast

• Greedy algorithms ⇒ heuristic, inexact but fast

• Branch-and-bound ⇒ exact but slow
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Experiments



Experiments

(Still a work in progress!)

• Faces datasets

• Extract facial features

• Sparsity = each feature has few pixels

• Hyperspectral datasets

• Extract materials

• Sparsity = each pixel has few materials
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Experiments results

Ht no-s Ht k-s Ht+sel NNOLS

CBCL Time 0.78 0.77 0.84 0.26

r = 49 Rel error 12.04 16.19 13.22 12.60

k = 3 Sparsity 6.53 2.69 3.0 2.71

Kuls Time 0.25 0.21 0.30 1.87

r = 5 Rel error 19.05 20.13 19.12 19.20

k = 3 Sparsity 3.44 2.86 3.0 2.84

Jasper Time 0.63 0.63 0.74 2.25

r = 4 Rel error 5.71 6.99 5.72 6.09

k = 2 Sparsity 2.27 1.79 2.0 1.81

Jasper Time 0.65

r = 4 Rel error 5.95

q/n = 1.8 Sparsity 1.8

Urban Time 6.67 6.55 10.73 22.04

r = 6 Rel error 7.67 8.62 7.83 8.14

k = 2 Sparsity 2.61 1.90 2.0 1.90
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Experiments results — Kuls faces, k = 3
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Experiments results

Urban hyperspectral image, 6th endmember, k = 2

(a) Ht no sparse (b) Ht k-sparse (c) Ht+sel (d) NNOLS
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Experiments results

Jasper hyperspectral image, 2nd endmember

(e) Ht no sparse (f) Ht+sel with

k = q/n = 2

(g) Ht+sel with

k = q/n = 1.8

(h) NNOLS with

k = 2
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Conclusion



Conclusion

• We introduced an sparse MNNLS model with matrix-wise `0-sparsity

constraint

• We developed a 2-step algorithm to tackle it

1. Any column-wise k-sparse method to generate paths of solutions

2. Greedy-like algorithm to select solutions, exact and cheap

• Improves results, allows a finer parameter tuning

• Interesting where sparsity varies between columns

• Almost as fast as standard NNLS algorithm

Next?

• Finish experiments with other path-generating methods

(branch-and-bound, greedy algorithms, . . . )
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Thanks!
Contact: nicolas.nadisic@umons.ac.be

Website: http://nicolasnadisic.xyz

=M W
H

mailto:nicolas.nadisic@umons.ac.be
http://nicolasnadisic.xyz


End of presentation
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Empty slide in case of question
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Second empty slide in case of second question
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