Sparse Multiple Nonnegative Least Squares with a Matrix-Wise ℓ_0 Constraint

(Still a work in progress!)

Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis

20 May 2021 — SIAM LA21

Université de Mons, Belgium

- 1. Motivation: Nonnegative Matrix Factorization (NMF)
- 2. Sparse Nonnegative Least Squares (NNLS)
- 3. Our matrix-wise $\ell_0\text{-constrained}$ method
- 4. Experiments
- 5. Conclusion

Motivation: Nonnegative Matrix Factorization (NMF)

Given

- Data matrix $M \in \mathbb{R}^{m \times n}_+$
- Rank $r \ll \min(m, n)$

find

- $W \in \mathbb{R}^{m \times r}_+$
- and $H \in \mathbb{R}^{r \times n}_+$

such that $M \approx WH$.

In optimization terms, standard NMF is equivalent to:

 $\min_{W \ge 0, H \ge 0} \|M - WH\|_F^2$

Why nonnegativity?

- More interpretable factors (part-based representation)
- Naturally favors sparsity
- Is natural in many applications (image processing, hyperspectral unmixing, text mining, ...)

NMF Application — Hyperspectral Unmixing

Images from Bioucas Dias and Nicolas Gillis.

- NMF algo. usually rely on alternating optimization of W and H (iteratively optimize one while fixing the other).
- Here we focus on the sparsity of *H*, but the concepts and algorithms can be applied on *W* symmetrically.

The optimization of H

$$\min_{\boldsymbol{H} \ge 0} \|\boldsymbol{M} - \boldsymbol{W}\boldsymbol{H}\|_F^2 \tag{1}$$

can be decomposed into n nonnegative least squares (NNLS) subproblems

$$\min_{\mathbf{x} \ge 0} \| \boldsymbol{b} - \boldsymbol{A}_{\mathbf{x}} \|_2^2, \tag{2}$$

where M(:,j), W, and H(:,j) correspond respectively to b, A, and x.

Sparse Nonnegative Least Squares (NNLS) Nonnegativity naturally favors sparsity = factors with few nonzero entries, but without guarantee.

It can be useful to enforce it explicitly, to:

- Further improve interpretability
- Leverage prior knowledge on sparsity
- Be able to impose an explicit user-defined level of sparsity

A natural measure: ℓ_0 - "norm" $||x||_0 = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x)

Convex relaxation: ℓ_1 -norm

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

• With a ℓ_0 -"norm" constraint, *k*-sparse NNLS

$$\min_{x \ge 0} \|b - Ax\|_2^2 \text{ s.t. } \|x\|_0 \le k$$

• in MNNLS/NMF, generally applied column-wise (or row-wise)

$$\min_{H \ge 0} \|M - WH\|_F^2 \text{ s.t. } \forall j, \|H(:,j)\|_0 \le k$$

• Intuitive formulation: a pixel contains at most k materials

- Column-wise k-sparse MNNLS/NMF is usually satisfactory
- but setting k can be hard in some contexts, where sparsity is not the same for all columns
- Ex: in hyperspectral unximing, the number of material differ between pixels

Matrix-wise q-sparse MNNLS

$$\min_{H \ge 0} \|M - WH\|_2^2 \text{ s.t. } \|H\|_0 \le q$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of H

Matrix-wise q-sparse MNNLS

$$\min_{H \ge 0} \|M - WH\|_2^2 \text{ s.t. } \|H\|_0 \le q$$

- Can be seen as a global sparsity budget
- If $q = k \times n$, this enforces an average k-sparsity on the columns of H

How to solve it?

- With a k-sparse NNLS methods, by vectorizing the problem
- $\bullet \, \Rightarrow$ leads to a huge NNLS problem, expensive to solve

$$\begin{split} \min_{\substack{H \ge 0}} \|M - WH\|_2^2 \text{ s.t. } \|H\|_0 \le q \\ \Rightarrow \text{ vectorize} \\ \min_{\substack{h \ge 0}} \|m - \Omega h\|_2^2 \text{ s.t. } \|h\|_0 \le q \\ \end{split}$$
where $\Omega = W \otimes I \in \mathbb{R}^{(m.n) \times (r.n)} \text{ and } m = \begin{bmatrix} M(:, 1) \\ M(:, 2) \\ \vdots \\ M(:, n) \end{bmatrix} \in \mathbb{R}^{(m.n)}$

Our matrix-wise $\ell_0\text{-constrained}$ method

- 1. Generate a set of solutions for every column of *H*, with different tradeoffs between reconstruction error and sparsity
 - Divide the sparse MNNLS problem into *n* sparse NNLS subproblems

$$\min_{H(:,j)\geq 0} \|M(:,j) - WH(:,j)\|_2^2 \text{ s.t. } \|H(:,j)\|_o \geq k$$

- For each column j, get the solutions for all $k \in \{1, \ldots, r\}$
- 2. Select one solution per column such that, in total H has q nonzero entries, and the error is minimized \Rightarrow assignment-like problem

$$\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}$$

Step 1: Generate solution path

Algorithms:

- Homotopy (see eg Kim et al. 2013), heuristic based on ℓ_1 relaxation
- NNOMP, NNOLS (see eg Nguyen et al. 2019), greedy heuristics
- arborescent (Nadisic et al. 2020), exact branch-and-bound algorithm
- NB: These are existing algorithms, not original contribution

Our contribution!

Select one solution per column to build a q-sparse matrix minimizing the error

- We have to solve a kind of assignment problem.
- First, build a cost matrix
 - each column represents a column H(:,j)
 - each row represents a k-sparsity between 0 and r
 - each entry is the error ||M(:,j) − WH(:,j)||²₂ of the k-sparse solution of column j.
- Then, greedy-like selection algorithm, fast but proved exact

$$\begin{pmatrix} C_{0,1} & C_{0,2} & \cdots & C_{0,n} \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r,1} & C_{r,2} & \cdots & C_{r,n} \end{pmatrix}$$

- Matrix-wise selection (step 2) is optimal
- Path-generating step (step 1)
 - Homotopy \Rightarrow heuristic, inexact but fast
 - Greedy algorithms \Rightarrow heuristic, inexact but fast
 - $\bullet \ {\sf Branch-and-bound} \Rightarrow {\sf exact \ but \ slow}$

Experiments

(Still a work in progress!)

- Faces datasets
 - Extract facial features
 - Sparsity = each feature has few pixels
- Hyperspectral datasets
 - Extract materials
 - Sparsity = each pixel has few materials

Experiments results

		Ht no-s	Ht <i>k</i> -s	Ht+sel	NNOLS
CBCL	Time	0.78	0.77	0.84	0.26
<i>r</i> = 49	Rel error	12.04	16.19	13.22	12.60
<i>k</i> = 3	Sparsity	6.53	2.69	3.0	2.71
Kuls	Time	0.25	0.21	0.30	1.87
<i>r</i> = 5	Rel error	19.05	20.13	19.12	19.20
<i>k</i> = 3	Sparsity	3.44	2.86	3.0	2.84
Jasper	Time	0.63	0.63	0.74	2.25
<i>r</i> = 4	Rel error	5.71	6.99	5.72	6.09
<i>k</i> = 2	Sparsity	2.27	1.79	2.0	1.81
Jasper	Time			0.65	
<i>r</i> = 4	Rel error			5.95	
q/n = 1.8	Sparsity			1.8	
Urban	Time	6.67	6.55	10.73	22.04
<i>r</i> = 6	Rel error	7.67	8.62	7.83	8.14
<i>k</i> = 2	Sparsity	2.61	1.90	2.0	1.90

22/30

Experiments results — Kuls faces, k = 3

Urban hyperspectral image, 6th endmember, k = 2

Jasper hyperspectral image, 2nd endmember

Conclusion

Conclusion

- We introduced an sparse MNNLS model with matrix-wise $\ell_0\text{-sparsity}$ constraint
- We developed a 2-step algorithm to tackle it
 - 1. Any column-wise k-sparse method to generate paths of solutions
 - 2. Greedy-like algorithm to select solutions, exact and cheap
- Improves results, allows a finer parameter tuning
- Interesting where sparsity varies between columns
- Almost as fast as standard NNLS algorithm

Next?

• Finish experiments with other path-generating methods (branch-and-bound, greedy algorithms, ...)

- Kim, Jingu et al. (2013). "Regularization Paths for Sparse Nonnegative Least Squares Problems with Applications to Life Cycle Assessment Tree Discovery". In: 2013 IEEE 13th International Conference on Data Mining, pp. 360–369.
- Nguyen, Thanh T. et al. (2019). "Non-Negative Orthogonal Greedy Algorithms". In: IEEE Transactions on Signal Processing, pp. 1–16.
 Nadisic, Nicolas et al. (2020). "Exact Sparse Nonnegative Least Squares". In: ICASSP 2020 - IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5395–5399. (Acceptance rate 47%).

Thanks!

Contact: nicolas.nadisic@umons.ac.be

Website: http://nicolasnadisic.xyz

End of presentation