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Abstract

Many tasks in machine learning and signal processing rely on linear models where data
points can be explained as the results of linear interactions between latent features.
To recover these features and extract useful information, we can leverage a priori
knowledge or assumptions about the underlying structure of the data. In this thesis,
we focus mainly on two assumptions: nonnegativity, meaning that the data points
are generated by only additive interactions of features, and sparsity, meaning that
only a few features interact to generate a given data point. We also consider the
assumption of separability, stating that for each feature there is at least one pure
data point, that is a point generated only by this feature. We develop variants of
linear models that leverage the assumptions of sparsity and nonnegativity to improve
performance or to handle cases that existing approaches fail to handle. We study the
theoretical implications of these assumptions and we design algorithms to tackle the
corresponding optimization problems. We especially focus on exact algorithms that
are guaranteed to recover the underlying solution.

The contributions of this thesis are centered around nonnegative least squares
problems (NNLS) and nonnegative matrix factorization (NMF). First, we propose
a new variant of separable NMF that leverages the fact that when the separability
assumption holds, then there are usually more than one pure data point per feature.
We propose two algorithms based on this stronger assumption. Next, we propose a
branch-and-bound algorithm to solve exactly sparsity-constrained NNLS problems,
as opposed to existing approaches that often rely on heuristics. We also propose a
biobjective extension of this algorithm that computes a set of solutions with different
tradeoffs between reconstruction error and sparsity. Then, we introduce an algorith-
mic framework to enforce matrix-wise sparsity constraints on NNLS problems with
multiple right-hand sides, and we prove it is optimal in some cases. Finally, we ex-
plore a variant of NMF combining the assumptions of separability and sparsity and
we provide a guaranteed algorithm to tackle it. This variant is the first to handle the
case where a feature is an additive linear combination of other features.

Although we focus on the models and algorithms rather than on the applications,
our underlying motivation is to perform feature extraction in images and notably
hyperspectral unmixing, that is, the identification of materials and their distribution
in a hyperspectral image. All our proposed models are validated empirically on the
unmixing of real-world hyperspectral images.
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Résumé

De nombreuses tâches en apprentissage automatique et en traitement du signal re-
posent sur des modèles linéaires où les points de données peuvent être expliqués comme
les résultats d’interactions linéaires entre des composantes latentes. Pour identifier
ces composantes et extraire des informations utiles à partir de données brutes, nous
pouvons exploiter des connaissances a priori ou des hypothèses sur la structure sous-
jacente des données. Dans cette thèse, nous nous concentrons principalement sur deux
hypothèses : la non-négativité, qui signifie que les points de données sont générés par
des interactions additives de composantes, et la parcimonie, qui signifie que seule-
ment quelques composantes interagissent pour générer un point de données. Nous
considérons également l’hypothèse de séparabilité, qui stipule que pour chaque com-
posante il existe au moins un point de données pur, c’est-à-dire un point généré unique-
ment par cette composante. Nous développons des variantes de modèles linéaires qui
tirent parti des hypothèses de parcimonie et de non-négativité pour améliorer leurs
performances ou pour traiter des cas que les approches existantes ne parviennent pas
à traiter. Nous étudions les implications théoriques de ces hypothèses et nous con-
cevons des algorithmes pour résoudre les problèmes d’optimisation correspondants.
Nous nous concentrons particulièrement sur les algorithmes exacts qui sont garantis
de retrouver la solution sous-jacente.

Les contributions de cette thèse sont centrées sur les problèmes de moindres
carrés non-négatifs (NNLS) et la factorisation non-négative de matrices (NMF). Tout
d’abord, nous proposons une nouvelle variante de la NMF séparable qui exploite le
fait que, lorsque l’hypothèse de séparabilité est vérifiée, il y a généralement plus d’un
point de données pur par composante. Nous proposons deux algorithmes basés sur
cette hypothèse plus forte. Ensuite, nous proposons un algorithme de type séparation-
et-évaluation pour résoudre exactement les problèmes NNLS sous contrainte de parci-
monie, par opposition aux approches existantes qui reposent souvent sur des heuris-
tiques. Nous proposons également une extension biobjective de cet algorithme qui
calcule un ensemble de solutions représentant différents compromis entre l’erreur de
reconstruction et la parcimonie. Puis nous présentons un cadre algorithmique pour
appliquer des contraintes de parcimonie au niveau matriciel aux problèmes NNLS
multi-colonnes, et nous prouvons qu’il est optimal dans certains cas. Enfin, nous
étudions une variante de NMF combinant les hypothèses de séparabilité et de parci-
monie, et nous fournissons un algorithme garanti pour la traiter. Cette variante est
la première à gérer le cas où une composante est une combinaison linéaire additive
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d’autres composantes.
Bien que nous nous concentrions sur les modèles et les algorithmes plutôt que

sur les applications, notre motivation sous-jacente est l’extraction d’information dans
les images, et notamment le démélange hyperspectral, c’est-à-dire l’identification des
matériaux dans une image hyperspectrale et leur distribution dans l’image. Tous les
modèles que nous proposons sont validés empiriquement par le démélange d’images
hyperspectrales réelles.
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Chapter 1

Introduction

“I want us to make this trip a spiritual journey, where each of us
seek the unknown and we learn about it. Can we agree to that?”

– The Darjeeling Limited, written by Wes Anderson

The main objective of data science is to extract useful knowledge and meaningful
information from data. To do so, many techniques use mathematical models rep-
resenting some kind of underlying structure in the data. These models sometimes
represent accurately some reality, for example the physical properties of a system.
However, even when they do not, they are often useful to extract some latent knowl-
edge. To refine these models, to improve their fitting to a physical model, to produce
more useful solutions, or to ease the practical solving, we often use a priori assump-
tions about the data and its underlying structures. Understanding and leveraging
these assumptions to build better models is the key motivation of this doctoral study.

The class of models we focus on are linear models, where we assume the data is
generated from linear interactions of underlying information. Our focus is also on
two a priori assumptions on the weights of the interactions: nonnegativity, where we
assume the linear interactions are only additive, and sparsity, where we assume each
observed data point is the outcome of only a few interactions. We study the impact of
these assumptions on the properties of some data models, with a particular attention
to the algorithmic aspects. Specifically, we consider least square problems and matrix
factorizations that we detail further in this chapter.

In this introductory chapter, we lay the foundations for the models considered
throughout the thesis. We review existing works related to constraints of sparsity
and nonnegativity in least squares problems and matrix factorizations. We do not
aim for an exhaustive description, but rather a high-level overview including a few
fundamentals and some useful pointers. The organization of the thesis is detailed at
the end of this introduction, in Section 1.9 (page 29).
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1.1 Constrained least squares problems
Signal processing and data mining tasks often rely on linear models, where a signal
or information vector x ∈ Rr is estimated from a set of measures or observations
b ∈ Rm, through a relation of the form Ax = b, with A ∈ Rm×r. Here A is a
coefficient matrix, often called dictionary; it represents a set of basis vectors, called
features, atoms, or components. We consider here the overdetermined case where
there are more observations than features, that is, we have m > r.

If A is known, the estimation of x can be expressed as the following optimization
problem,

min
x
‖Ax− b‖22. (1.1)

The objective function, also called the data-fitting term, is here the squared `2-
norm defined as ‖x‖22 =

∑r
i=1 |xi|2, corresponding to a least squares (LS) problem.

Other objective functions exist and the choice of the most appropriate one for a
particular application is a research question on its own. In this thesis, we stick to the
`2-norm. It is the most widely used and it is adapted to an assumption of Gaussian
noise, which is realistic in the applications we focus on. This problem is generally
ill-posed, in the sense that the solution is non-unique or unstable. It is hard to solve
when the available data is noisy, which is typically the case in real-world applications.

To account for noise and model errors and make the recovery of the original
solution easier, one can benefit from a priori knowledge on the structure of the solution
vector x. This knowledge can be expressed as constraints imposed on x during the
optimization process.

For instance, nonnegative representations imply that a data point is generated
from an additive combination of components [48]. This constraint is natural for many
applications, for instance,

• In facial images, the faces are the nonnegative linear combination of facial fea-
tures such as eyes, noses and lips [47].

• In hyperspectral images, the spectral signature of a pixel is the nonnegative
linear combination of the spectral signature of the materials it contains [13], see
Section 1.6 for details.

The resulting nonnegative least squares (NNLS) problem can be formulated as:

min
x
‖Ax− b‖22 such that x ≥ 0, (1.2)

where x ≥ 0 means x is entry-wise nonnegative.
Another example is sparsity. It consists in assuming a data point can be adequately

represented using only a few atoms. It helps producing more interpretable solutions.
As a constraint, sparsity means the solution vector x is required to have only a few
nonzero entries. While nonnegativity is known to naturally induce sparsity [25], there
is no guarantee on the sparsity of the solution of a general NNLS problem. Therefore,
applications where sparsity is an important feature may benefit from explicit sparsity
constraints.
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The most natural sparsity measure is the `0-“norm”, as it is equal to the number
of nonzero elements of a vector, ‖x‖0 = |{i : xi 6= 0}|. Note that, although often
called so, `0 is not a proper norm, nor a pseudo-norm or quasi-norm, because it lacks
the homogeneity property. The notation with quotation marks (`0-“norm”) seems
widely accepted1. Therefore, we can define a sparsity constraint with a maximum
number of nonzero entries, k. Combined with nonnegativity, this leads to the following
formulation, called k-sparse NNLS,

min
x≥0
‖Ax− b‖22 such that ‖x‖0 ≤ k. (1.3)

In hyperspectral unmixing, this k-sparsity constraint implies that a pixel can be
composed of at most k materials. We review in Section 1.2 the existing methods to
solve Problem (1.3).

Although this formulation is intuitive, in some cases setting the parameter k is
not straightforward. Therefore, we can also consider a biobjective formulation, where
the objectives are on the one hand to minimize the reconstruction error, and on the
other hand to maximize the sparsity (that is, minimize the `0-“norm”),

min
x≥0
{‖Ax− b‖22, ‖x‖0}. (1.4)

Sparser solutions typically lead to a higher error, and hence these objectives are
conflicting, so in general there is not one optimal solution to Problem (1.4). We need
a trade-off between the two objectives, thus we seek Pareto-optimal solutions.

Given different objectives to optimize, a solution x is said Pareto-optimal if there
does not exist any solution which is at least as good as x on all objectives and strictly
better than x on at least one objective. The set of all Pareto-optimal solutions
for a given problem is called the Pareto front, see Fig. 1.1. Here, the discreteness
of the `0-“norm” implies that solving Problem (1.4) conceptually reduces to solving
Problem (1.3) for all possible values of k.

Another possible formulation for sparse NNLS is the minimization of the `0-“norm”
with a constraint on the reconstruction error,

min
x≥0
‖x‖0 such that ‖Ax− b‖22 ≤ ε, (1.5)

for a given ε ∈ R+. We do not focus on this formulation in this work, because in the
applications we consider it is usually easier and more intuitive to determine a sparsity
threshold k rather than an error threshold ε.

1.2 k-sparse NNLS
Because of the discreteness of the `0-“norm”, the k-sparse NNLS problem (1.3) is
combinatorial in nature, and NP-hard [64]. Indeed, it implies to find the optimal
support (that is, the set of the indices of the non-zero entries) for x among the

(
r
k

)
possible supports.

1Orally, it is usually pronounced “norm” while mimicking brackets with both hands.



22

0
‖x‖00

‖A
x
−

b‖
2 2

1 2 3 4 r = 5

x = 0‖b‖22

x ∈ argminx≥0 ‖Ax− b‖22

Figure 1.1: Example of the Pareto front for a biobjective k-sparse NNLS problem
with r = 5 variables. The first solution, for ‖x‖0 = 0, corresponds to the zero vector.
The last solution, for ‖x‖0 = 5, corresponds to the NNLS problem with no sparsity
constraint. Here the penultimate solution is identical to the last one, meaning that
the solution with no sparsity constraint has naturally 1 zero entry.

Many works were proposed for solving globally the `0-constrained least squares
problem, although not specifically with nonnegativity constraints. Notably, Bien-
stock proposed in 1996 [12] a reformulation of Problem (1.3) into a mixed-integer
program (MIP), and a branch-and-cut algorithm to solve it, using continuous relax-
ation at every iteration. Several contributions extended this approach, for example
under different constraints, or using new methods to solve the continuous relaxation
subproblem; see for example [9, 15] and the references therein. Ben Mhenni et al.
[8] further extended it, using a homotopy algorithm to compute the relaxations. Al-
though it may be possible to adapt these algorithms to the nonnegative setting, it
has not been done yet, to the best of our knowledge.

For this reason, most existing works to solve sparse NNLS problems rely on ap-
proximate approaches, inexact in general but computationally efficient. They are
often based on existing sparse LS methods, adapted to take on board the nonnega-
tivity constraint. They mostly fall into two categories: greedy algorithms (discussed
below), and `1-regularized methods (discussed in Section 1.3).

Greedy algorithms encompass methods that start with an empty support (xi = 0
for all i), and select components one by one to enrich the support until the target
sparsity k is reached. The selection of a component is done greedily, by choosing
the component maximizing the decrease of the residual error. Orthogonal versions of
these methods, such as Orthogonal Least Squares (OLS) [17] and Orthogonal Match-
ing Pursuit (OMP) [68] ensure a component can be selected only once. Nonnegative
variants have been proposed and successfully used; see for example [65] and the ref-
erences therein. There exist theoretical conditions that guarantee the recovery of the
optimal solution, but they are unfortunately restrictive in practice [73].

Another family of sparse optimization methods avoid the issues linked with the
`0-“norm” by using `1-relaxation.
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1.3 `1-relaxation
A convex relaxation of the `0-“norm” is the `1-norm defined as ‖x‖1 =

∑r
i=1 |xi|.

Formulations based on the `1-norm are convex problems, and as such they are eas-
ier to optimize and they benefit from the generic algorithms and strong theoretical
results from convex optimization. Problems based on the `1-norm include the mini-
mization of the reconstruction error with a constraint of the `1-norm of the solution,
the minimization of the `1-norm with a constraint on the error, or the minimization
of a weighted-sum form. The latter can be written as the following problem:

min
x
‖Ax− b‖22 + λ‖x‖1 such that x ≥ 0, (1.6)

where λ is a given nonnegative constant controlling the tradeoff between error and
sparsity. This is equivalent to the LASSO [77] model with a nonnegativity constraint.
Problems of this form are usually solved with iterative algorithms, such as coordinate
descent. However, these methods have several drawbacks. First, they rely on the
parameter λ that has no explicit meaning, and depends a lot on the application and
the data properties. Setting a value to reach a given sparsity is not straightforward,
and generally implies time-consuming trial and error. Second, they introduce a bias
in the objective function, in the sense that the regularization term not only enforces
sparsity but also shifts the objective function away from the original objective. Finally,
although there exist theoretical guarantees for support recovery, such as the Exact
Recovery Condition [78], their conditions are restrictive and often not realistic in
practice. As a rule of thumb, `1-based methods tend to work well when the columns
of A are not too correlated.

1.4 Least squares problems with multiple right-hand
sides

In many applications, we have to deal with NNLS problems with multiple right-hand
sides (MNNLS), that is, problems of the form

min
X
‖B −AX‖2F such that X ≥ 0, (1.7)

where B ∈ Rm×n, A ∈ Rm×r, and X ∈ Rr×n. Note that many objective functions
measuring the error between B and AX can be used, but in this thesis we focus on
the squared Frobenius norm defined as

∑m
i=1

∑n
j=1M(i, j)

2 for a matrix M ∈ Rm×n.
It is the most widely used in practice and it corresponds to an assumption of Gaussian
noise, which is adequate in the applications we focus on.

We note B(:, j) the j-th column of the matrix B. Problem (1.7) can be decomposed
into n NNLS subproblems of the form (1.2), where B(:, j) and X(:, j) correspond
respectively to b and x. For example, in the unmixing of a hyperspectral image,
every column B(:, j) represents a pixel (more precisely, the spectrum at a given pixel
location), and the corresponding column X(:, j) represents its composition, in terms
of the abundances of the r materials whose spectral signatures are the columns of A.
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Note that in (1.7), for the sake of conciseness, we focus only on the optimization of
X, but all concepts and algorithms can be applied symmetrically on A.

To encourage sparsity in MNNLS, one can apply a sparse NNLS model column-
wise, leading to

min
X
‖B −AX‖2F such that X ≥ 0 and ‖X(:, j)‖0 ≤ k for all j. (1.8)

Solving Problem (1.8) boils down to solving n independent subproblems of the form
(1.3).

1.5 Nonnegative matrix factorization
The MNNLS problem is related to the nonnegative matrix factorization (NMF) prob-
lem, of the form

min
A,X
‖B −AX‖2F such that A ≥ 0 and X ≥ 0, (1.9)

in which we aim at finding both the factors A and X, given B and a factorization
rank r that is usually small compared to m and n. As explained in the previous
section, many objective functions exist but in this thesis we focus on the Frobenius
norm. This dimensionality reduction technique is able to identify underlying features
in large datasets in an unsupervised manner. Geometrically, the columns of A can be
seen as r vertices whose convex hull contains the data points (columns of B), under
appropriate scaling.

Since its introduction by Paatero and Tapper in 1994 [67], and its formalization
by Lee and Seung in 1999 [47], NMF has been successfully extended and applied in a
variety of problems; see for example [29] and the references therein. The main advan-
tage of NMF over similar techniques such as PCA is the production of interpretable
factors, leading to a part-based representation, where every data point is expressed
as an additive combination of atoms.

In general, if the rank r is part of the input, NMF is NP-hard [80]. However, if one
of the factors is fixed, then the optimization of the remaining one is a convex problem
of the form (1.7). The usual optimization scheme for NMF consists in alternatively
optimizing A and X, by optimizing one factor while fixing the other, which is equiv-
alent to solving MNNLS subproblems. Moreover, the optimization of one factor can
be decomposed in a series of NNLS subproblems of the form (1.2). For instance, if A
is fixed, then the computation of X is equivalent to solve n NNLS subproblems with,
for all j ∈ {1, . . . , n}, B(:, j) = b, and X(:, j) = x.

One of the features that made NMF popular, since its very introduction [47],
is the natural sparsity of the produced factors. However, it is not guaranteed, and
there is no easy way to control this sparsity. As many applications can benefit from
an increased or explicitly required sparsity, see [43] and the references therein, it is
useful to add sparsity constraints to the NMF model. Several variants of the NMF
model have been introduced to take sparsity into account, and we review them in
Section 1.7.
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The applications of NMF are numerous, and we can cite as examples topic mod-
eling, recommender systems, clustering, chemometrics, audio source separation, and
so on; see [29] and the references therein. The models and algorithms considered in
this thesis are generic and could theoretically be applied in most of these applications.
However, they are mainly motivated by feature extraction in images, and in particular
by hyperspectral unmixing, a remote sensing problem discussed in the next section.

1.6 Hyperspectral unmixing
Hyperspectral unmixing is a key problem in remote sensing, and the main motivation
for the contributions presented in this thesis. Here we do a quick introduction to this
problem, see the survey papers [13, 54] and the references therein for more details.

A hyperspectral image (HSI) is a picture of a scene acquired within a large number
of spectral bands, usually between 100 and 200, instead of the usual 3 bands of
RGB images. Thus, for each pixel a precise electromagnetic spectrum is recorded,
which gives an information concerning the materials present in the pixel; specifically,
about their reflectances (fraction of incoming light they reflect) and/or their emissivity
(which is due to the fact that the materials usually have non-zero temperatures).
These materials are also called endmembers. Unfortunately, despite their high spectral
resolution, hyperspectral sensors generally have a low spatial resolution; as such, the
spectrum recorded for each pixel might not correspond to the one of a single material,
but rather to a mixture of the spectra of the different materials present within the
pixel.

Given an HSI, hyperspectral unmixing (HU) thus aims to recover the abundances of
each material in each pixel. If the materials present in the image are also unknown, the
task of identifying them along the corresponding abundances is called blind HU. The
standard model used to solve (blind) HU is the linear mixing model. It assumes that
the spectral signature of each pixel is a linear combination of the spectral signatures
of the endmembers, where the weights of the linear combination are the abundances
of the endmembers in the pixel. Typically, we represent a hyperspectral image as a
matrix B, where the jth column, B(:, j), corresponds to the spectral signature of the
jth pixel in the scene. If the spectral signatures of the endmembers are also collected
as the columns of a matrix A, then according to the linear mixing model, the jth
pixel can be written as B(:, j) ≈ ∑r

k=1A(:, k)X(k, j) + N(:, j), where X(k, j) is the
abundance of the kth endmember in the jth pixel, and N(:, j) represents the noise
and model misfit. This is exactly the setup of Problems (1.7) and (1.9). See Fig. 1.2
for an illustration.

It is worth noting that by modelling a hyperspectral image as a matrix, we cannot
use directly the spatial information of this image (relative position of pixels). To
account for this information, either the image should be modeled as a 3-way tensor,
or we should use appropriate regularization such as total variation regularization. This
calls for other models and techniques that are out of the scope of the present work.
However, we will see that even without spatial information, techniques based on least
squares solving and matrix factorization are able to extract meaningful knowledge
from hyperspectral images.
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B(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑
p

A(:, p)︸ ︷︷ ︸
spectral signature of

p-th material

X(p, j)︸ ︷︷ ︸
abundance of p-th

material in the j-th pixel

Figure 1.2: Illustration of the linear mixing model. Figure adapted from J. Bioucas
Dias and N. Gillis [33].

1.7 Sparse NMF
Among the numerous variants of NMF, sparse NMF is arguably one of the most
popular. In this section, we review the most important methods designed to favor
sparsity in NMF problems.

In 2002, Hoyer [39] introduces nonnegative sparse coding, the first method to
enhance sparsity for NMF. It considers an `1 regularization on X, leading to the
following penalized problem:

min
A≥0,X≥0

‖B −AX‖2F + λ‖X‖1, (1.10)

where λ is a given parameter, controlling the tradeoff between the reconstruction
error and the `1-sparsity. Note that, because of the nonnegativity constraint, ‖X‖1 =∑
i,j Xi,j . The algorithm introduced to solve (1.10) locally is based on a penalized

multiplicative update (MU) for X, and a projected gradient descent for A. As ‖X‖1
can always be minimized without changing the reconstruction error by scaling down
X and scaling up A, the optimization of (1.10) would make A grow and X tend to
0. To avoid that, at every iteration, A is rescaled so that all of its columns have unit
norm.

Eggert and Korner presented in 2004 [23] a new algorithm for the same model
based on a modified MU rule that implicitly normalizes the columns of A to have unit
norm. Leplat et al. introduced in 2021 [49] a framework for multiplicative updates to
tackle β-divergence NMF with different penalties, including a sparse variant with an
`1-penalty on X and the normalization of the columns of A.
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This model has several drawbacks. Particularly, the parameter λ depends on the
application and the dataset, and it can be hard to tune to reach a specific sparsity.
It also introduces a bias that can reduce the quality of the factorization.

To address these issues, Hoyer introduces NMF with sparseness constraints in
2004 [38]. This model considers a more explicit metric for sparsity, based on the ratio
between the `1-norm and the `2-norm,

spar(x) =

√
r − ‖x‖1‖x‖2√
r − 1

,

where r is the dimension of x. Indeed, 1 ≤ ‖x‖1/‖x‖2 ≤
√
r, so spar(x) equals 0 when

all entries of x are non-zero and have the same value, and 1 when only one entry
is non-zero. This sparsity constraint is enforced with a projection on the constraint
space, on either the columns of A or the rows of X, after every iteration of the
optimization with a standard gradient descent.

Kim and Park presented in 2007 [43] an Alternating Nonnegative Least Squares
(ANLS) algorithm for a variant of the `1-penalized problem. This variant consid-
ers a column-wise sparsity of X (respectively, a row-wise sparsity of A) of the form
λ‖X(:, j)‖21 (respectively, λ‖A(i, :)‖21). The key of this variant is the square on the
`1-norm term. Indeed, as opposed to ‖x‖1, ‖x‖21 is differentiable at 0 at each coordi-
nate, which allows a direct optimization with ANLS, with no need for projection or
normalization.

Cichocki et al. introduced in 2008 [18] a novel approach, based on alpha and
beta divergence, and a variant of the algorithm hierarchical alternating least squares
(HALS) [19].

In 2012, Gillis [31] proposed a modified version of Sparse HALS, where the λ
parameter is automatically tuned during the iterations to reach a given sparsity rate
(defined as the proportion of entries smaller than 10−6 times the larger entry).

Rapin et al. proposed in 2013 [71] a nonnegative variant of generalized morphologi-
cal component analysis (GMCA). This algorithm solves Problem (1.10) using proximal
calculus to solve exactly the subproblems of updating A and X. A soft-thresholding
is done to enforce sparsity. The threshold λ is first set to a high value, and then
decreased iteratively; this process is a key in GMCA and helps to reduce noise con-
tamination. It also renormalizes the columns of A to unit norm. This algorithm is
shown robust to noise.

To avoid the issues inherent to `1 regularization, various works considered a model
of sparse NMF with a constraint on the `0-“norm” of the columns of X (or A, more
rarely). Here we focus on the constraint on the columns of X for simplicity, but the
approaches for A are essentially the same. This model strength is the intuitive and
explicit nature of the `0 constraint that represents the maximum number of basis
elements a data point can be composed of. Given a number k ∈ N, this problem can
be formalized as follows:

min
A,X
‖B −AX‖F s.t. A ≥ 0, X ≥ 0, and ‖X(:, j)‖0 ≤ k for all j. (1.11)
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Therefore, the update of X can be seen as a series of nonnegative sparse coding
subproblems.

In 2006, Aharon et al. introduced K-SVD [2]. Its nonnegative variant NNK-
SVD [3] is equivalent to (1.11). The update of X is done with an approximate
nonnegative basis pursuit, and the update of A with a SVD approximation where
negative entries are set to 0.

Morup et al. also proposed in 2008 an algorithm [55] to solve (1.11). The update of
X is done with a nonnegative variant of least angle regression and selection (LARS).
The update of A is done with the same self-normalizing MU rule as [23].

Peharz and Pernkopf proposed in 2012 [69] a new algorithm for (1.11). Their
approach is based on a nonnegative variant of orthogonal matching pursuit (OMP),
a greedy algorithm for sparse coding (see Section 1.2 for details).

Gong et al. proposed in 2018 [37] an original way to reformulate (1.11). Instead of
imposing a constraint on the `0-“norm”, they consider a biobjective problem, where
the objectives are minimizing the reconstruction error and minimizing the `0-“norm”.
This problem is split up column-wisely into a series of biobjective subproblems that
are solved approximately using a multi-objective evolutionary algorithm. The output
of this approach is a set of solutions (pairs Ak, Xk) forming an approximation of a
Pareto front. The main advantage of this method is that the analyst does not have
to define a priori an arbitrary parameter or threshold.

In 2019, Cohen and Gillis [20] proposed a method to solve exactly the nonnegative
sparse coding subproblems, using a bruteforce approach. The key contribution of
this work is not the well-known bruteforce approach, but rather its use in an alter-
nate optimization scheme for NMF, where it significantly improves the quality of the
results.

1.8 Separable NMF

In this section, we review a common variant of NMF called separable NMF. It relies
on the assumption of separability of the input matrix B, defined as follows.

Definition 1.1 A matrix B is r-separable if there exists a subset of r columns of B,
indexed by J , and a nonnegative matrix X ≥ 0, such that B = B(:,J )X.

Equivalently, B is r-separable if B has the form B = A[Ir, X
′]Π, where Ir is the

identity matrix of size r, X ′ is a nonnegative matrix, and Π is a permutation matrix.
Separability is equivalent to the pure-pixel assumption in hyperspectral unmixing,
stating that for each material present in a hyperspectral image there is a least one
pixel composed of only this material.

Separable NMF consists in selecting the right r columns of B such that B can be
reconstructed perfectly. In other words, it consists in finding the atoms (columns of
A) among the data points (columns of B). It is defined as follows.

Problem 1.1 (Separable NMF) Given a r-separable matrix B, find
A = B(:,J ) with |J | = r and X ≥ 0 such that B = AX.
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Note that, if A is known, the computation of X is straightforward: it is a convex
problem that can be solved using any nonnegative least squares (NNLS) solver2.
However, the solution is not necessarily unique, unless A is full column-rank.

In general, NMF is NP-hard [80]. However, Arora et al. [6] proved that NMF is
solvable in polynomial time under the separability assumption. In the presence of
noise, which is typically the case in real-life applications, this problem is called near-
separable NMF and is also solvable in polynomial time given that the noise level is
sufficiently small [6]. In this case, we are given a near-separable matrix B ≈ B(:,J )X
where |J | = r and X ≥ 0.

The early algorithms building on this assumption emerged in the blind HU com-
munity. They include pure-pixel index (PPI) in 1995 [14], N-FINDR in 1999 [81], and
vertex component analysis (VCA) in 2005 [63]. Most of these algorithms were devel-
oped based on convex geometry concepts. These early works however did not analyze
noise robustness, and in fact they are not guaranteed to recover the endmembers in
the presence of noise.

In analytical chemistry, Problem (2.1) is closely related to the problem of self-
modeling curve resolution [41]. As in blind HU, several algorithms were devel-
oped based on geometry concepts; in particular the successive projection algorithm
(SPA) [4].

More recently, and motivated by applications in machine learning (in particular,
topic modeling where pure data points are referred to as anchor words), Arora et
al. [6] introduced the first provably robust separable NMF algorithms. Their robust-
ness is deterministic: under some conditions, their algorithm is guaranteed to recover
an approximation of the column of A. Arora et al. were not aware of the algorithms
developed within the blind HU literature. Many provably robust algorithms have
followed this seminal paper, including algorithms that use linear programming [30,
35, 72], a generalization of SPA [36], fast anchor words [5], and the successive nonneg-
ative projection algorithm (SNPA) [32]. These deterministically robust algorithms
guarantee that, in the presence of noise, the vertices are recovered, up to some error
bounds that depend on the noise level and the conditioning of A; see Section 2.2.1 for
such a result for SPA. We refer the interested reader to [29, Chapter 7] for a detailed
discussion and comparison of these algorithms.

1.9 Contributions and outline of the thesis
The starting point of this thesis is NMF, and how to leverage sparsity in this model.
Let us remind the NMF problem; note that as discussed in Section 1.5 we focus on
the variant using the Frobenius norm as objective function. Given B ∈ Rm×n and
r ∈ N, NMF consists in finding A ∈ Rm×r and X ∈ Rr×n to solve

min
A,X
‖B −AX‖2F such that A ≥ 0 and X ≥ 0.

It led us to explore different research directions, some motivated by a practical need
in a specific application, others by curiosity about the behavior of a model under some

2For example, it can be solved with the Matlab function lsqnonneg.
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assumptions. The contributions of this thesis focus mainly on sparse models involving
the `0-“norm”. This non-convex constraint brings interesting properties to these mod-
els, both theoretically and in applications. The resulting optimization problems are
combinatorial and hard to solve, and the development of exact algorithms to tackle
them is an important part of this work. Another focus of this thesis is the separability
assumption in matrix factorizations, and two chapters describe novel variants of the
separable NMF model along with practical algorithms.

Let us present the contributions of this thesis and the motivations behind them;
see Fig. 1.3 for a graphical overview.

• Separable NMF is a very popular model that shows good performance in many
practical cases. However, existing separable NMF algorithms do not leverage
the fact that, when the separability assumption holds, then there are generally
multiple pure data points for each vertex instead of just one (only one algorithm
called ALLS leverages this fact, and it has some practical limitations). This
stronger assumption holds in many real-world datasets, notably hyperspectral
images, and we can take advantage of it to design algorithms that are more
robust to noise and outliers.

−→ In Chapter 2, we propose two new algorithms for smoothed separable NMF,
which is a variant of the separable NMF model where we assume that, when
the separability assumption holds, then for each vertex there are more than one
data point composed purely of this vertex.

• k-sparse NNLS problems are present in many tasks of machine learning and sig-
nal processing, but existing algorithms generally rely on relaxation or heuristics
with limited guarantees and we lack a way to solve these problems exactly with
a reasonable computing time. k-sparse NNLS problems are highly-structured
combinatorial problems, so we can design an exact algorithm that leverages this
structure to prune the search space.

−→ In Chapter 3, we propose a branch-and-bound algorithm to solve exactly the
k-sparse NNLS (1.3).

• In k-sparse NNLS problems, the parameter k is sometimes hard to set a pri-
ori. To avoid a tedious trial-and-error process, it would be more convenient
to consider the biobjective sparse NNLS problem and compute a Pareto front
with solutions representing different tradeoffs between error and sparsity. An
algorithm capable of this would be useful both on its own and as a subroutine
in more complex problems.

−→ In Chapter 3, we also extend our branch-and-bound algorithm to solve exactly
the biobjective k-sparse NNLS problem (1.4).

• In MNNLS problems, the column-wise sparsity constraint is not adequate when
the sparsity varies between columns. This is notably the case in hyperspectral
unmixing when pixels are composed of different numbers of materials. Existing



Chapter 1. Introduction 31

matrix-wise methods rely on relaxations or heuristics and have limited guar-
antees. There is a need for an algorithm with explicit matrix-wise sparsity
constraints and optimality guarantees.

−→ In Chapter 4, we propose an MNNLS model with a matrix-wise `0-constraint,
along with an algorithm that finds an optimal solution in most cases.

• No existing separable NMF algorithm leverages the sparsity assumption whereas
it often holds in practice. Moreover, no existing algorithm handles the case
when a vertex (column of A) is an additive linear combination of other vertices.
This can happen for example in multispectral unmixing when the number of
materials present in the image exceeds the number of spectral bands of the
image. Assuming a degree of sparsity of X can make the solution identifiable
and allow the design of algorithms to recover it.

−→ In Chapter 5, we propose sparse separable NMF, a new NMF variant that com-
bines the assumptions of separability and column-wise k-sparsity, along with
theoretical analysis and an algorithm to solve it.

Chapter 6 concludes this thesis and draws some perspectives for future research.
Note that Chapters 4 and 5 depend on Chapter 3.
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Nonnegative Matrix Factorization
min

A≥0,X≥0
‖B − AX‖2F

Separable NMF, estimate A
under separability A = B(:,J )

Sparse MNNLS, estimate X
with A fixed,

min
X≥0
‖B − AX‖2F s.t. X is sparse

Chapter 3:
Column-wise sparsity

‖X(:, j)‖0 ≤ k for all j [61]

Why? No dedicated
exact algorithm

What? Branch-and-
bound algorithm

Chapter 3:
Biobjective sparse NNLS
min
x≥0
{‖Ax− b‖22, ‖x‖0} [60]

Why? Constrained
formulation is sometimes
limited, k is hard to set

What? Biobjective
extension of branch-
and-bound algorithm

Chapter 4: Matrix-wise
sparsity ‖X‖0 ≤ q [57]

Why? Column-wise
sparsity is sometimes

limited, few works exist
for matrix-wise sparsity

(mostly heuristics,
e.g. `1-relaxation)

What? Algorithmic
framework with

optimality guarantees
under conditions

Chapter 5: Sparse
separable NMF [59]

Why? No work handles
the case where a vertex is
an additive combination
of other vertices, nor
leverages sparsity

What? New model
and exact algorithm for
separable NMF with
sparsity constraints,
identifiability and
complexity proofs

Chapter 2: Smoothed
separable NMF [58]

Why? Separable NMF
is popular and powerful
but algorithms do not
leverage the presence
of multiple pure data

points (only ALLS does
so, and it has limitations)

What? Two smoothed
separable NMF algo-

rithms that outperform
the state of the art

Figure 1.3: Graphical overview of the contents of the thesis. Dotted boxes correspond
to our contributions. Dotted arrows denote dependencies between contributions.



Chapter 2

Smoothed Separable NMF

“De temps en temps on tombe sur un farfelu qui croit qu’il a inventé
l’eau chaude, mais le plus souvent c’est une adaptation d’un modèle
existant.”

– Kaamelott, written by Alexandre Astier

In this chapter, we study a novel variant of near-separable NMF. Many NMF al-
gorithms have been developed under the (near-)separability assumption, stating that
there is at least one nearby data point to each vertex; two of the most widely used
ones are vertex component analysis (VCA) and the successive projection algorithm
(SPA). This assumption is known as the pure-pixel assumption in blind hyperspec-
tral unmixing. More recently, Bhattacharyya and Kannan (ACM-SIAM Symposium
on Discrete Algorithms, 2020) proposed an algorithm for learning a latent simplex
(ALLS) that relies on the assumption that there is more than one nearby data point
to each vertex. In that scenario, ALLS is probabilistically more robust to noise than
algorithms based on the separability assumption. In this work, inspired by ALLS,
we propose smoothed VCA (SVCA) and smoothed SPA (SSPA) that generalize VCA
and SPA by assuming the presence of several nearby data points to each vertex. We
illustrate the effectiveness of SVCA and SSPA over VCA, SPA and ALLS on syn-
thetic data sets, and on the unmixing of hyperspectral images. In addition, our study
highlights new theoretical results for VCA.

The content of this chapter is mainly extracted from [58]:

58. Nadisic, N., Gillis, N. & Kervazo, C. Smoothed separable nonnegative matrix
factorization. preprint arXiv:2110.05528 (2021).

2.1 Introduction
In this chapter, we first introduce a problem that generalizes nonnegative matrix
factorization. It is called simplex-structured matrix factorization (SSMF), and consists
in, given a set of data points within the convex hull of a set of vertices, estimating
these vertices in the presence of noise. This problem can be formulated as follows.

33



34

Problem 2.1 Given B = AX + N ∈ Rm×n where X ∈ Rr×n+ is column stochastic
and N is the noise, estimate A ∈ Rm×r.

X being column-stochastic means that, for all j, ‖X(:, j)‖1 = 1. Note that A, X
and N are unknown, only B is given. Once A is estimated, X can be estimated for
example using a nonnegative least squares (NNLS) algorithm. For a more detailed
study of Problem (2.1), see [1] and the references therein.

In Problem (2.1), the columns of A are the vertices, while the columns of B are
noisy data points within the convex hull of the columns of A,

conv(A) = {y | y = Az, z ≥ 0, e>z = 1},

where e is the vector of all ones of appropriate dimension. See Fig. 2.1 for an illus-
tration.
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Figure 2.1: Illustration of SSMF in 3 dimensions (for m = 3).

In fact, for all j, we have

B(:, j) = AX(:, j) +N(:, j),

where X(:, j) ≥ 0 and e>X(:, j) = 1 (since X is column stochastic), which means
that B(:, j)−N(:, j) ∈ conv(A) for all j. To be able to estimate A in Problem (2.1),
appropriate assumptions on A, X and N are required. In particular, the following
assumptions are necessary:

• No column of A is contained in the convex hull of the other columns of A,
otherwise it is not possible to distinguish it from a data point.
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• The data points must be sufficiently spread within conv(A), having data points
on each facet of conv(A). This implies some degree of sparsity for X.

• The noise N must be bounded.

To obtain provable or practical algorithms, the above assumptions must be care-
fully and rigorously complemented. Different assumptions on A, X, and N lead to
different models for which different algorithms can be designed; see Section 2.2 for a
literature review. We discuss below some applications of such algorithms.

Applications in data analysis and machine learning In [7, 11], the authors de-
scribe in details various applications of solving the SSMF problem (2.1); in particular
topic modeling via latent Dirichlet allocation, adversarial clustering, and community
detection via the mixed membership stochastic block model. Moreover, Problem (2.1)
generalizes NMF and as such could be useful for all applications of NMF, such as fea-
ture extraction in sets of images, audio source separation, or chemometrics. Although
the model considered in this work is very generic, we are motivated mainly by blind
hyperspectral unmixing (HU), as described in Section 1.6.

Pure-pixel assumption An important class of algorithms to solve blind HU are
pure-pixel search algorithms. They rely on the assumption that for each endmember,
there is at least one pixel in which this endmember appears almost alone, that is,
purely, so that the endmember signature is close to the one of the corresponding
pure pixel. Two of the most effective and widely used pure-pixel search algorithms
are vertex component analysis (VCA) [63] and the successive projection algorithm
(SPA) [4] which will be described in Section 2.2.

Outliers One of the motivations of this chapter is to better handle outliers. In
hyperspectral unmixing, an outlier can be defined broadly as a pixel whose spectra
is very different from all other pixels, and that we do not consider as reliable data.
It may originate from the acquisition process, for example because of a faulty cell in
the sensor or electronic interference. It can also correspond to a very rare material
present in the scene. In both cases, they can disturb the unmixing, especially when
they are out of the convex hull of the actual endmembers.

Terminology In the NMF literature, the pure-pixel assumption is referred to as
separability, and the corresponding algorithms are referred to as separable NMF al-
gorithms, or near-separable NMF algorithms; see Section 1.8. Geometrically, the
pure-pixel assumption requires that there is a data point (that is, a column of B),
close to each vertex (that is, to each column of A). We will refer to such a data point
as pure when the corresponding column of X is a unitary vector (that is, a column
of the identity matrix). Note that in this chapter we use the terms “separable” and
“near-separable” equally to designate the inexact case, that is we assume the presence
of noise.
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Contribution and outline When the separability assumption holds, there are
typically more than one data point close to each vertex. In this work, we leverage
this observation by adapting VCA and SPA, providing two new algorithms, namely
smoothed VCA (SVCA) and smoothed SPA (SSPA). The idea is to aggregate (for
instance average) several data points around a vertex to obtain a better estimate of
that vertex. In practice, it enables our two smoothed algorithms to achieve much bet-
ter separation results than their non-smoothed counterparts, and to be more tolerant
to noise.

SVCA can also be interpreted as an adaptation of the algorithm for learning a
latent simplex (ALLS) proposed in [11], with two major modifications that we detail
in Section 2.3. This observation allows us to provide theoretical guarantees for SVCA,
and hence VCA which is a special case of SVCA. To the best of our knowledge, this
is the first time a theoretical guarantee for VCA is provided in the presence of noise.

We believe that this work paves the way for a whole new branch of smoothed
separable NMF algorithms. Although we focus in this work on VCA and SPA, two of
the most well-known separable NMF algorithms, it is straightforward to extend the
methodology to more recent algorithms such as the successive nonnegative projection
algorithm (SNPA) [32].

The chapter is organized as follows. In Section 2.2, we summarize the literature
for solving Problem (2.1), with a focus on three algorithms, namely VCA, SPA and
ALLS. In Section 2.3, we propose SVCA which is equivalent to applying VCA on
a smoothed data set. SVCA is similar to ALLS, but two key differences make it
empirically more efficient than ALLS. In Section 2.4, we propose SSPA which adapts
SPA in the presence of multiple pure pixels. In Section 2.5, we show on synthetic and
real-world hyperspectral data sets that SVCA and SSPA outperform VCA, SPA and
ALLS in the presence of multiple pure pixels. In Section 2.6 we discuss some pratical
aspects of SVCA and SSPA and we conclude this chapter.

2.2 Simplex-structured matrix factorization
In this section, we describe existing models and algorithms to solve Problem (2.1),
that is, to solve SSMF, in order to identify the vertices of the convex hull of a set of
data points, B. We focus on two key models, upon which our contribution is built:

1. Separable NMF: it assumes there is one data point close to each vertex of
conv(A), and that the noise added to each data point is bounded. Some authors
refer to this model as near-separable NMF. It is detailed in Section 1.8.

2. Learning a latent simplex: it is motivated by machine learning applications. It
assumes that there is more than one data point close to each vertex of conv(A),
but it allows much larger noise levels as it only requires the `2 norm of N
to be bounded, instead of each individual column. This model is detailed in
Section 2.2.2.

Other models and algorithms exist to tackle Problem (2.1) relying on different
assumptions. It is worth mentioning minimum-volume NMF [26, 51], where A is
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regularized such that its convex hull conv(A) has the smallest possible volume, facet-
based identification algorithms that identify the facets of conv(A) from which its
vertices are recovered [1, 28, 50, 52], and probabilistic simplex component analysis [82]
that relies on a probabilistic model on the data (the columns of X are sampled using
the Dirichlet distribution, and the entries of N using i.i.d. Gaussian noise). Discussing
these approaches in detail is out of the scope of this article, whose focus is on the
separable NMF problem.

2.2.1 Model 1: Separable NMF

As already mentioned, an important class of NMF algorithms relies on the separability
assumption as detailed in Section 1.8. In Problem (2.1), separability amounts to
assuming there exists an index set J of cardinality r such that X(J , :) = Ir where
Ir is the r-by-r identity matrix. In the following, we describe in more detail two
separable NMF algorithms, VCA and SPA. They will be instrumental in proposing
our new algorithms, smoothed VCA in Section 2.3 and smoothed SPA in Section 2.4.

Vertex component analysis

VCA [63] is a greedy separable NMF algorithm, that is, it identifies the indices of
the subset J sequentially. The index set is initialized with J = ∅. At each of the
r iterations of VCA, a random direction belonging to the subspace spanned by the
r top left singular vectors of B is generated (this is equivalent to working with the
best rank-r approximation of B, and hence filters the noise). This direction is then
projected onto the orthogonal complement of B(:,J ), and the index of the column
of B that maximizes the absolute value of the inner product with that direction is
added to J . Algorithm 2.1 summarizes VCA. We note N (0, Ir) a random vector of
size r generated following the normal distribution of mean 0 and variance 1.

The computational cost of VCA is O(r nnz(B)) operations, where nnz(B) is the
number of non-zero entries of B. The main cost is to compute Y which can be
done efficiently using the subspace power iteration, in O(nnz(B)r) operations, and to
compute the products (dTk P

⊥)B at each of the r iterations.
An important drawback of VCA is that it is not guaranteed to be deterministically

robust to noise. In other words, for any noise N such that a data point goes outside
conv(A), there is a non-zero probability that VCA extracst this point. The reason is
that VCA uses a linear function to identify the vertices of conv(A); see [29, Chapter
7.4] for a numerical example.

Successive Projection Algorithm

SPA [4] is very similar to VCA. The only difference is in the selection step, when
adding an index to J . SPA selects the column of P⊥B with maximum `2 norm; see
Algorithm 2.2.

It is interesting to note that VCA is equivalent to SPA if the direction uk randomly
chosen at each step is instead taken as the column of the residual P⊥B with maximum
`2 norm. We will use this observation for our proposed algorithm, smoothed SPA.
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Algorithm 2.1: Vertex Component Analysis (VCA) [63]
Input: The matrix B ∈ Rm×n, the number r of columns to extract.
Output: Index set J of cardinality r such that B ≈ B(:,J )X for some

X ≥ 0.

1 Let J = ∅, P⊥ = Im, V = [ ].
2 Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors

of B.
3 for k = 1 : r do
4 Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g.,

dk ∼ YN (0, Ir).
5 Compute uk = (dTk P

⊥)B ∈ Rn, and let jk = argmax1≤j≤n |uk(j)|.
6 Let J = J ∪ {jk}.
7 Update the projector P⊥ onto the orthogonal complement of A = B(:,J ):

vk =
P⊥B(:, jk)

‖P⊥B(:, jk)‖2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

Remark 2.1 (On the projection P⊥) As opposed to VCA, SPA does not work on
the subspace spanned by the first r singular vectors of B, and hence we stick to this
variant in this chapter. However, in practice, projecting the data onto this subspace
allows noise filtering and typically leads to better numerical performance.

Robustness of SPA As opposed to VCA, SPA is deterministically robust to noise,
provided the following assumption on top of near-separability (Assumption 1.1):

Assumption 2.1 (column-wise bounded noise) In Problem (2.1), the noise sat-
isfies ‖N(:, j)‖2 ≤ ε for all j for some ε > 0 sufficiently small.

Let us state the robustness result for SPA.

Theorem 2.1 [36, Theorem 3] Let B = AX + N as in Problem (2.1), and let
Assumptions 1.1 and 2.1 be satisfied, that is, A = B(:,J ∗) for some index set J ∗ of
cardinality r, and ‖N(:, j)‖2 ≤ ε for all j where ε ≤ O

(
σ3
r(A)√
rK(A)2

)
. Let also the rth

singular value of A be positive, that is, σr(A) > 0, meaning that A has rank r. Let J
be the index set extracted by SPA. Then there exists a permutation π of {1, 2, . . . , r}
such that for all k = 1, 2, . . . , r,

‖B(:,J (k))−A(:, π(k))‖2 ≤ O
(
εK(A)2

σ2
r(A)

)
,

where J (k) denotes the kth index in J , and K(A) = maxj ‖A(:, j)‖2.
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Algorithm 2.2: Successive Projection Algorithm (SPA) [4]
Input: The matrix B ∈ Rm×n, the number r of columns to extract.
Output: Index set J of cardinality r such that B ≈ B(:,J )X for some

X ≥ 0.
1 Let J = ∅, P⊥ = Im, V = [ ].
2 Let u1(j) = ‖B(:, j)‖22 for all j.
3 for k = 1 : r do
4 Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5 Let J = J ∪ {jk}.
6 Update the projector P⊥ onto the orthogonal complement of A = B(:,J ):

vk =
P⊥B(:, jk)

‖P⊥B(:, jk)‖2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

7 Update the squared norms of the columns of P⊥B: for all j,

uk+1(j) = uk(j)− v>k B(:, j) = ‖P⊥B(:, j)‖22.

Note that the bounds in Theorem 2.1 are relatively weak: the noise level has to
be rather small to guarantee SPA to recover A approximately.

2.2.2 Model 2: Learning a latent simplex

A drawback of separable NMF algorithms, such as VCA and SPA, is that they assume
that there is only one data point close to each column of A. Therefore, to estimate
A, the column-wise bounded noise assumption (Assumption 2.1) is necessary; see
Theorem 2.1. This is a rather strong assumption, often not met in practical situations
as typically many data points are affected by large amounts of noise.

Bhattacharyya et al. [11] rather propose to leverage the fact that typically more
than one data point are close to each column of A. This assumption, which is stronger
than the pure-pixel one (requiring only a single pure-pixel), allows higher noise levels.
It is called the proximate latent points assumption, and is defined as follows.

Assumption 2.2 (proximate latent points) In Problem (2.1), there exists r in-
dex sets, Jk for k = 1, 2, . . . , r, of cardinality at least p = δn such that

‖AX(:, j)−A(:, k)‖2 ≤
4σ

δ
for all j ∈ Jk,

for some δ ∈
[

1
n ,

1
r

]
and σ > 0.
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Under this assumption, instead of looking for one column of B to represent each
vertex, like in VCA and SPA, algorithms should look for p of them and then estimate
each vertex as the average of these p data points. We will refer to such algorithms
as smoothed separable NMF algorithms. The main contribution of this chapter is to
propose two new such algorithms; in Sections 2.3 and 2.4.

This assumption is often met in the machine learning applications mentioned in
Section 2.1; see the discussions in [7, 11]. For high-resolution HSIs that satisfy the
pure-pixel assumption, there are typically more than one pixel close to each endmem-
ber. This claim will be validated numerically in Section 2.5.2.

Algorithm to learn a latent simplex

To solve Problem (2.1) under Assumption 2.2, Bhattacharyya and Kannan [11] pro-
posed an algorithm similar to VCA, which we refer to as the algorithm for learning a
latent simplex (ALLS). The main difference between ALLS and VCA is the selection
step. Instead of picking a single column of B, ALLS averages over p columns for some
p ∈

{
1, 2, . . . , bnr c

}
. More precisely, ALLS picks the p columns corresponding to the

indices that maximize the absolute value of uk; see Algorithm 2.3.
The idea behind ALLS is to apply VCA on a smoothed data set. This smoothed

data set is made of
(
n
p

)
data points which are the averages of all possible combinations

of p data points, that is, p columns of B. Of course, constructing this smoothed data
set explicitly is not practical, since

(
n
p

)
grows exponentially. However, by the linearity

of the selection step in VCA, this is not necessary: the smoothed data point that
maximizes a linear function is the average of the p data points that have the p largest
values for that function. Algorithm 2.3 summarizes ALLS.

Note that ALLS with p = 1 is equivalent to VCA.

Computational cost The only additional cost of ALLS compared to VCA is to
average p columns of B, which requires r times O(pm) operations, which is negligible
since p� n ≤ nnz(B).

Probabilistic robustness of ALLS

Let us describe the assumptions needed to prove the probabilistic robustness of ALLS.
The condition on A is defined as follows:

Assumption 2.3 (well-separatedness of A) In Problem (2.1), the matrix A sat-
isfies

α(A) =
mink=1,2,...,r minx ‖A(:, k)−A(:, k̄)x‖2

K(A)
> 0, (2.1)

where k̄ = {1, 2, . . . , r}\{k} and K(A) = maxj ‖A(:, j)‖2.

Assumption 2.3 holds if and only if rank(A) = r, in which case conv(A) is a simplex,
that is, a polytope of dimension r−1 with r vertices (hence the name of the algorithm).

The condition on the noise is as follows.
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Algorithm 2.3: Algorithm for Learning a Latent Simplex (ALLS) [11]
Input: The matrix B ∈ Rm×n, the number r of columns of A, the number p

of columns of B to be averaged to obtain each column of A.
Output: A matrix A′ such that B ≈ A′X for some X ≥ 0.

1 Let A′ = [ ], P⊥ = Im, V = [ ].
2 Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors

of B.
3 for k = 1 : r do
4 Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g.,

dk ∼ YN (0, Ir).
5 Compute uk =

(
dTk P

⊥)B ∈ Rn.
6 Let Sk be the set of p indices corresponding to the largest coordinates of

uk in absolute value.
7 Let A′(:, k) average of the columns of B(:,Sk).
8 Update the projector P⊥ onto the orthogonal complement of A′:

vk =
P⊥A′(:, k)

‖P⊥A′(:, k)‖2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

Assumption 2.4 (Spectrally bounded perturbations) In Problem (2.1),

‖N‖2 = σmax(N) ≤ σ
√
n,

where there exists some constant c such that

σ ≤ α2
√
δ

c r9
min
j
‖A(:, j)‖2, (2.2)

where α = α(A) is defined in Assumption 2.3, and δ and σ in Assumption 2.2 (recall,
p = δn is the number of data points close to each column of A).

It is key to note here that the noise allowed is not column wise as in Assump-
tion 2.1, but on the spectral norm of N , which is rather different.

We can now state the robustness theorem for ALLS.

Theorem 2.2 ([11]) Let us consider Problem (2.1) under Assumptions 2.2 (proxi-
mate latent points), 2.3 (well-separatedness of A) and 2.4 (spectrally bounded pertur-
bations). Then, with probability at least 1− c/r3/2, ALLS computes a matrix A′ such
that upon permutation of its columns, for all k = 1, 2, . . . , r,

‖A(:, k)−A′(:, k)||2 ≤ O

(
r4σ

α
√
δ

)
. (2.3)



42

Note that substituting (2.2) in (2.3) gives

‖A(:, k)−A′(:, k)||2 ≤ O
( α

c r5

)
min
j
‖A(:, j)‖2.

Implications for VCA Interestingly, since ALLS for p = 1 coincides with VCA,
Theorem 2.2 provides a probabilistic robustness result for VCA which is unknown in
the blind HU literature.

Bounds of SPA versus ALLS

Theorem 2.2 might look somewhat weak because of the dependence in r9 in the
bound (2.2) for σ. However, it is not known whether this bound is tight, although it
is believed it could be improved [7, 11]. A similar comment applies to SPA. Moreover,
these bounds assume an adversarial setting, and noise robustness under particular
generative models is also an interesting direction of research, as in [82].

In any case, Theorem 2.2 only requires a bound on ‖N‖2 while SPA requires each
column of the noise matrix N to be bounded, indicating that ALLS should perform
better, in general, when p is sufficiently large. Since the theory is still not fully
developed and the tightness of the theoretical bounds should be carefully studied, it
is important to compare these algorithms empirically to shed light on their differences
on practical problems; this will be done in Section 2.5.

2.3 Smoothed VCA

Inspired by VCA, and ALLS, we now propose smoothed VCA (SVCA); see Algo-
rithm 2.4. SVCA has two key important differences compared to ALLS:

1. At step k, ALLS selects the p entries maximizing the absolute value of the vector
of uk, obtained as the inner product of B and a randomly generated direction
d>k P

⊥; see steps 4-5 of Algorithm 2.3. This is not equivalent to maximizing
(or minimizing) the linear function l(x) = d>k P

⊥x over the smoothed polytope.
In fact, by using the absolute value, this approach could select data points
in opposite directions. For example, take the simple case with two vertices
w1 = (−1, 0) and w2 = (1, 0). For any direction d, we have |d>w1| = |d>w2|
and hence it is very likely that data points close to both vertices will maximize
|d>x|, and their average will be a poor approximation of both vertices.

Instead, to maximize (or minimize) l(x), one should select the p indices max-
imizing uk (or −uk). In SVCA, we therefore propose to select the p indices
that maximize (resp. minimize) uk if the median of the p largest values is larger
(resp. smaller) than the absolute value of the median of the p smallest values of
uk. We have observed in practical experiments that this modification of ALLS
is crucial to obtain competitive results in real-world hyperspectral images. In
fact, we will see that SVCA outperforms ALLS, and the main reason is this
modified selection step.
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2. Instead of averaging p columns of B at each step, we will also consider taking
their median. We define the median of a set a vectors as the entry-wise me-
dian, thus creating a virtual vector that is in the “middle” of the columns of B
considered. This allows SVCA to be much more tolerant to gross corruptions
and outliers, which are often present in HSI. (In the presence of Gaussian noise,
using the average is better.)

It also allows SVCA to be more tolerant to a misspecified value of p. For
example, assume a scenario where there are exactly p′ data points close to each
vertex. For p < p′, one does not leverage optimally the presence of multiple
pure data points. On the other side, as soon as p is larger than p′, ALLS will
perform rather badly because it will average p′ data points close to a vertex and
p − p′ data points potentially far away. If instead one takes the median, the
algorithm remains able to extract the vertices accurately for any p < 2p′. In
practice, as we will show in Section 2.5, using the median performs significantly
better on real data sets.

Note that SVCA has the same computational cost as VCA, SPA and ALLS, namely
O(rnnz(B)) operations.

Recovery Guarantees for SVCA SVCA is very similar to ALLS, and in fact the
robustness analysis of ALLS applies to SVCA, that is, Theorem 2.2 applies to SVCA.
The reason is that we guarantee SVCA to extract the data point in the smoothed
data set that maximizes the absolute value l(x) = d>k P

⊥x.

2.4 Smoothed SPA

Since SVCA is equivalent to VCA for p = 1, it is not guaranteed to be deterministically
robust to noise. This motivates us to propose smoothed SPA. Unfortunately, it is not
practical to apply SPA directly on the smoothed data set. Indeed, it would require to
find the p columns of the smoothed data set with the largest `2 norm. The `2 norm
being a nonlinear function, it would require to explicitly compute the

(
n
p

)
data points

of the smoothed data set, which is computationally prohibitive.
Instead, we replace the random selection of uk = YN (0, 1) in SVCA by the column

of the residual P⊥B with maximum `2 norm, that is, uk = P⊥B(:, jk) for some jk
so that ‖uk‖2 ≥ ‖P⊥B(:, j)‖2 for all j. This allows us to combine the best of ’both
worlds’: deterministic robustness under separability when p = 1, and the use of the
proximate latent point assumption when p > 1 (Assumption 2.2).

Recovery Guarantees for SSPA For p = 1, SSPA coincides with SPA, and
hence Theorem 2.1 applies to SSPA for p = 1, that is, it is deterministically robust to
column-wise bounded noise. However, since the selection step of SSPA is determinis-
tic, Theorem 2.2 does not apply to SSPA. A promising direction of further research
would be to analyze noise robustness of SSPA for p > 1.
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Algorithm 2.4: Smoothed Vertex Component Analysis (SVCA)
Input: The matrix B ∈ Rm×n, the number r of columns of A ∈ Rm×r, the

number p of columns of B to be averaged to obtain each column of
A, the aggregation method (median or mean).

Output: A matrix A such that B ≈ AX for some X ≥ 0.
1 Let A = [ ], P⊥ = Im, V = [ ].
2 Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors

of B.
3 for k = 1 : r do
4 Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g.,

dk ∼ YN (0, Ir).
5 Compute uk =

(
dTk P

⊥)B ∈ Rn.
6 if the median of the p largest values of uk is larger than the absolute value

of the median of the p smallest values of uk then
7 Let Sk be the set of p indices maximizing uk.
8 else
9 Let Sk be the set of p indices minimizing uk.

10 Let A(:, k) be the median (or the mean) of the columns of B(:,Sk).
11 Update the projector P⊥ onto the orthogonal complement of A = B(:,J ):

vk =
P⊥B(:, jk)

‖P⊥B(:, jk)‖2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

Should you use SVCA or SSPA? SVCA has the advantage to be a randomized
algorithm, and hence can be run multiple times and the best solution, according to
some criterion, can be kept. SSPA is deterministic and has the advantage to have
stronger theoretical guarantees for p = 1. From a practical point of view, one could
run SVCA several times, and SSPA once, and then keep the best solution.

Comparing algorithms In these experiments, when the ground truth A∗ is not
available, we will use the following criterion

QF (A) =
minX≥0 ‖B −AX‖F

‖B‖F
∈ [0, 1],

to evaluate the quality of a solution A. Note that we do not use the sum-to-one
constraint, X>e = e, because, in many practical situations, including hyperspectral
imaging, this constraint is not satisfied for all columns of X, e.g., for pixels with low
luminosity; see a discussion in [32].
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Algorithm 2.5: Smoothed Successive Projection Algorithm (SSPA)
Input: The matrix B ∈ Rm×n, the number r of columns of A ∈ Rm×r, the

number p of columns of B to be averaged to obtain each column of
A, the aggregation method (median or mean).

Output: A matrix A such that B ≈ AX for some X ≥ 0.
1 Let A = [ ], P⊥ = Im, V = [ ].
2 Let u1(j) = ‖B(:, j)‖22 for all j.
3 for k = 1 : r do
4 Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5 Let dk = B(:, jk).
6 Compute uk = (dTk P

⊥)B ∈ Rn.
7 if maxi uk(i) ≥ −mini uk(i) then
8 Let Sk be the set of p indices maximizing uk.
9 else

10 Let Sk be the set of p indices minimizing uk.

11 Let A(:, k) be the median (or the mean) of the columns of B(:,Sk).
12 Update the projector P⊥ onto the orthogonal complement of A = B(:,J ):

vk =
P⊥B(:, jk)

‖P⊥B(:, jk)‖2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

13 Update the squared norms of the columns of P⊥B: for all j,

uk+1(j) = uk(j)− v>k B(:, j) = ‖P⊥B(:, j)‖22.

In matrix factorization, it could be argued that in general QF (A) is not a good
measure to assess the quality of a solutionA, since anyA such that conv(B) ⊂ conv(A)
implies QF (A) = 0, even if A is very different from the ground truth A∗. In our case
though, QF (A) is relevant, since all the considered algorithms generate solutions A
which columns are close to conv(B). Indeed, VCA, SPA and ALLS generate solutions
within conv(B). This is not always the case for SVCA and SSPA, because of the use
of the median (a non-linear operator) for the aggregation of the columns of B. In
practice though, they find solutions close to conv(B).

2.5 Numerical experiments

In this section, we study and compare the performance of ALLS, SVCA, and SSPA.
We first consider synthetic datasets and then the unmixing of real-world hyperspectral



46

images. The code and data are available online1. All algorithms are implemented in
Matlab and run on a computer with an i5-8350U processor.

2.5.1 Synthetic data sets

In this section, we study the behavior of smooth separable NMF algorithms in several
experimental setups. To build synthetic data sets, we first build A ∈ R224×10

+ by
selecting 10 columns from the USGS hyperspectral library2 using SPA. The condition
number of the corresponding matrix is κ(A) = 33.88. The corresponding spectral
signatures are shown in Fig. 2.2. Then, we generate a random X ∈ R10×1000

+ such
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Figure 2.2: Spectral signatures (that is, columns of A) used to generate synthetic
data sets.

that X = [I10, X
′], meaning there is at least one pure data point for every vertex.

The coefficients of X ′ follow a Dirichlet distribution, which is usually a good model
for the abundances in HSI [62], of parameters αe, where α controls the proportion of
data points close to the vertices, see Table 2.1. The larger α, the denser the columns
of X and the less likely the ‘proximal latent points’ assumption is to be satisfied for
large p.

Finally, we let B = AX + N where N is a normalized Gaussian noise: Given a
noise level ε, we first generate N(i, j) ∼ N (0, 1) for all (i, j), then set

N ← ε
‖AX‖F
‖N‖F

N,

1https://gitlab.com/nnadisic/smoothed-separable-nmf
2https://www.usgs.gov

https://gitlab.com/nnadisic/smoothed-separable-nmf
https://www.usgs.gov
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Table 2.1: Generating the columns of X ∈ R10×n using the Dirichlet distribution
of parameter αe, this table reports the expected percentage, δ, of pure data points
close to each vertex. The jth data point is considered close to the ith vertex when
X(i, j) > 0.95, hence this table reports the expected value of 1

n

∣∣{j | X(i, j) > 0.95}
∣∣

for all i. Since the Dirichlet distribution is uniform with parameters αe, this expected
value is the same for all i.

α 0.01 0.02 0.05 0.1 0.2 0.5
δ 7.7% 5.9% 2.7% 0.75% 0.06% 0%

so that ε is the norm of the noise relative to AX: ‖N‖F = ε‖AX‖F .
Given the noisy data matrix B and a parameter p, we can compute A′ with

the algorithms ALLS, SVCA, and SSPA. We note ALLS(p), SVCA(p) and SSPA(p)
these algorithms run with parameter p. Given the computed solution A′, we report
the mean removed spectral angle (MRSA) to assess its quality. Given two spectral
signatures x, y ∈ Rm, the MRSA is defined as follows:

φ(x, y) =
1

π
arccos

(
(x− x̄)T (y − ȳ)

‖x− x̄‖2‖y − ȳ‖2

)
∈ [0, 1],

where for a vector z ∈ Rm, z̄ = (
∑m
i=1 zi)e and e is the vector of all ones. Given two

matrices, here the groundtruth A and the estimate A′, we define the MRSA as

MRSA(A,A′) =

r∑
j=1

φ(A(:, j), A′(:, j)),

after the columns of A′ have been reordered so as to minimize the MRSA. The smaller
the MRSA, the better the solution. For ALLS and SVCA, on a given data set, we
run 30 trials and keep the median of the results. SSPA is deterministic so we only
run it once. Unless stated otherwise, SVCA and SSPA are equipped with the median
aggregation. In the following, we consider several experimental setups to highlight
the property of these algorithms.

In Fig. 2.3, we test ALLS, SVCA, and SSPA with different values of the param-
eter p, when the noise ε varies. Note that SVCA(1) and SSPA(1) are equivalent to
their non-smoothed version VCA and SPA. Also note that ALLS(1) is equivalent to
SVCA(1) and thus VCA. In this experiment, we observe that smoothing improves
the algorithm performances. However, for ALLS, a parameter p set too large can in
fact worsen the solution, especially when the noise level is small. In that case, the
algorithm selects too many points and aggregates points that are close to a vertex
with other points that are too far away, thus drifting the estimated vertex away from
the true underlying vertex. Also, ALLS is outperformed by SVCA and SSPA, except
for a very small noise; this will be confirmed in experiments on hyperspectral images
in Section 2.5.2.

In Fig. 2.4, we compare the stability of ALLS and SVCA when ε varies by showing
the best, median, and worst result among 30 runs. We also compare them to the
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Figure 2.3: Results for ALLS, SVCA, and SSPA for different values of p, when ε
varies, for fixed n = 1000 and purity α = 0.05 (δ = 2.7%). Values for ALLS and
SVCA are the medians over 30 trials. Note that ALLS(1)=SVCA(1)=VCA.

MRSA of the result of SVCA that has the smallest reconstruction error, QF (A′), and
to SSPA. We see that the best result from ALLS is slightly better than other results.
This is due to the use of the mean as an aggregation method, which works better
with the centered Gaussian noise of the synthetic data3, see Fig. 2.6. However, the
algorithm is less stable, as the median and worst result are worst than SVCA. With
SVCA, the median results are close to the best. Also, the best results in terms of
reconstruction error generally coincides with the best one in terms of MRSA, showing
that the reconstruction error is a good proxy for the tested algorithms, as evoked
in Section 2.4 (this will be useful when the groundtruth is unknown and the MRSA
cannot be computed, for example in Section 2.5.2). The deterministic SSPA is better
than the median result of SVCA, but not always better than its best result.

In Fig. 2.5, we compare SVCA and SSPA with higher values of p when ε varies.
Again, we observe that the smoothing improves the algorithm performances, but
an overestimated p worsens it. Interestingly, when the noise is very high (above

3Using the mean instead of the median in SVCA, its best MRSA result is always better than that
of ALLS in this experiment.
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Figure 2.4: Comparison of SSPA with best, median, and worst result for ALLS and
SVCA among 30 runs, when ε varies, for fixed n = 1000, purity α = 0.05 (δ = 2.7%)
and parameter p = 25. "Best err SVCA" represents the MRSA of the solution of
SVCA that has the smallest relative reconstruction error.

10%), smoothed algorithms outperform their non-smoothed counterpart even when p
is overestimated. This is due to the fact that the value of p required to obtain the
best estimation of A is not only determined by the purity but also by the noise level.
For instance, consider a toy example with four data points and r = 2:

B = AX +N = A

[
1 0 0.99 0.01
0 1 0.01 0.99

]
+N.

That is, x3 and x4 are not pure-pixel but are almost pure. Let us further assume N
to follow a centered Gaussian law. If ε = 0 (noiseless mixing), the best estimation of
A(:, 1) (resp. A(:, 2)) from B is to extract B(:, 1) (resp. B(:, 2)), yielding a perfect
estimation. On the other hand, if ε is large relatively to the distance of A(:, 1) and
A(:, 2), it is better to choose as an estimate of A(:, 1) (resp. A(:, 2)) the average – or
median – of B(:, 1) and B(:, 3) (resp. B(:, 2) and B(:, 4)), as the noise power is then
divided by two.

In Fig. 2.6, we compare SVCA and SSPA equipped with either the median or the
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Figure 2.5: Results for SVCA and SSPA for different values of p, when ε varies, for
fixed n = 1000 and purity α = 0.05 (δ = 2.7%), Values for SVCA are the medians
over 30 trials.

mean aggregation, for fixed data setup and when p varies. The reverse bell curve
shows that the performance of the algorithms improves gradually as p grows, until it
reaches an optimal value, after which the performance gradually worsens. We observe
that the algorithms equipped with the median are more robust to an overestimation
of p, but with the mean they are slightly better for smaller p. However the difference
is small; this is expected as this synthetic data is generated with centered Gaussian
noise, and as such the mean is expected to give the best estimation when p is well
chosen. Note that the results would be different with different kind of noises, and
the median could for instance be better with sparse noises. The difference is more
obvious in hyperspectral images, see Section 2.5.2 and Fig. 2.8.

In Fig. 2.7, we compare SVCA and SSPA when p varies in setups with different
values of purity α. As expected, we observe that the shapes of the curves are similar,
and that for a fixed noise level the value of the parameter p leading to the lowest
MRSA decreases as the parameter α increases.

To summarize, our synthetic experiments highlight that the two proposed algo-
rithms generally obtain better results than ALLS. They furthermore show that SVCA
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Figure 2.6: Results for SVCA and SSPA using either the median or the mean to
average points, when p varies, for fixed n = 1000, purity α = 0.05 (δ = 2.7%), and
noise ε = 0.05. Values for SVCA are the medians over 30 trials.

and SSPA outperform VCA and SPA when p is well chosen. Although the choice of
p is important, as a bad value can worsen the results compared to the non-smoothed
algorithms, the use of the median instead of the mean makes the algorithms less
sensitive to this choice.

2.5.2 Hyperspectral images
In this section, we apply ALLS, SVCA, and SSPA to the unmixing of hyperspectral
images, as described in Section 2.1. We consider three commonly used hyperspectral
images4, San Diego, Urban, and Terrain. In hyperspectral data sets, extremely large
values are commonly associated with sensor noise or interference. To avoid overfitting
the factorizations to these interferences, the pixels corresponding to the 10 largest
values of any wavelength range are zeroed out. Extreme pixels generally have extreme
values in many wavelenghts ranges at once, so this preprocessing removes less than
0.1% pixels. The characteristics of these images are summarized in Table 2.2.

4Downloaded from http://lesun.weebly.com/hyperspectral-data-set.html

http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 2.7: Results for SVCA and SSPA for different values of purity α, when p varies,
for fixed n = 1000 and noise ε = 0.05. Values for SVCA are the medians over 30 trials.

Given a data matrix B ∈ Rm×n, we compute A ∈ Rm×r with the three algorithms.
We then compute for each algorithm X ∈ Rr×n with a standard coordinate descent
algorithm [34] and measure the relative reconstruction error ‖B−AX‖F /‖B‖F . The
smaller the error, the better the solution.

Some works such as [85] proposed groundtruths for these hyperspectral images, but
they are computed using numerical methods and as such do not necessarily represent
reality. Therefore, we lack a reference to assess the quality of the reconstruction,
for example by measuring the MRSA. This is why we use the relative reconstruction
error as the criterion for the quality of a solution. This is a satisfying criterion, as
illustrated in Fig. 2.4.

In Table 2.3, we report results from the experiments. We observe that, when
p > 1, the result is always improved. When p is too large, however, the solution can
be worse. We observe that the best p varies between the algorithms. For example, with
Terrain, ALLS and SVCA perform best with p = 1000 while SSPA performs best with
p = 100. Larger values of p seem to give more stable results, as it produces solutions
with smaller deviations. SVCA outperforms ALLS in all cases. SSPA performance
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Table 2.2: Summary of the hyperspectral images studied in this work

Dataset m n r Pixels zeroed out
San Diego 158 400× 400 = 160000 8 19
Urban 162 307× 307 = 94249 6 68
Terrain 188 500× 307 = 153500 6 107

is comparable to SVCA, and generally produces a better result than the median of
SVCA, but never better than the best result obtained by SVCA over 30 runs.

In a few cases, SSPA produces solutions with a large error, for example in San
Diego for p = 100 and Terrain for p = 1000. We believe this behavior to originate
from small groups of points with a very large norm, that could correspond to a rare
material or to interference.

Table 2.3: Relative reconstruction errors (minX≥0 ‖B−AX‖F /‖B‖F ) resulting from
the unmixing of hyperspectral images with ALLS, SVCA, and SSPA, with different
values of parameter p. SVCA(1) and SSPA(1) are equivalent to VCA and SPA. For
non-deterministic algorithms ALLS and SVCA, we show the minimum, median, stan-
dard deviation, and maximum of the error over 30 trials. Numbers in bold correspond
to the best results for each algorithm on each dataset.

SanDiego Urban Terrain
p Min Med ± std Max Min Med ± std Max Min Med ± std Max

ALLS 1 4.72 5.60 ± 0.67 8.25 5.39 9.14 ± 1.93 12.26 3.94 4.88 ± 0.73 7.08
100 4.27 5.35 ± 1.72 10.91 6.37 9.28 ± 3.18 19.40 3.84 4.87 ± 0.87 6.85
1000 4.64 6.14 ± 1.12 8.68 6.78 9.71 ± 2.16 14.20 3.84 4.71 ± 1.19 8.81
2000 4.87 5.91 ± 1.62 11.79 6.96 9.93 ± 1.60 12.85 3.96 4.89 ± 0.88 7.63
5000 5.51 7.42 ± 2.64 13.88 7.68 10.37 ± 1.89 14.98 4.28 5.26 ± 0.80 6.88

SVCA 1 3.95 5.42 ± 0.61 6.90 6.25 9.13 ± 1.78 12.23 4.03 5.11 ± 1.25 8.70
100 3.44 4.92 ± 0.77 6.96 5.08 6.10 ± 1.27 10.13 3.52 4.04 ± 0.67 6.52
1000 3.82 4.95 ± 0.59 6.82 5.82 6.77 ± 1.23 10.84 3.18 3.92 ± 0.38 4.70
2000 3.73 4.40 ± 0.51 5.81 5.66 6.36 ± 0.67 7.83 3.38 4.12 ± 0.45 4.95
5000 4.01 4.66 ± 0.73 7.01 5.69 6.94 ± 1.21 11.74 3.70 4.19 ± 0.30 4.82

SSPA 1 5.90 9.46 5.01
100 9.29 6.65 4.03
1000 5.82 6.22 8.05
2000 4.32 6.11 7.86
5000 4.65 5.91 5.38

In Fig. 2.8, we compare SVCA and SSPA using either the median or the mean
for the unmixing of the hyperspectral image Urban, with a varying p. We observe
that p > 1 always leads to better results for all algorithms and all data sets. Also,
the median aggregation almost always gives better results than the mean. While
the curves are not as regular as with synthetic data, we observe a similar tendency
that the solution improves when p grows, until a certain point or zone after which it
worsens again. However, SSPA-med has an irregular behaviour for p = 200. This can
be explained by the fact that SSPA is a greedy algorithm, so if it makes a bad choice
in the first iterations, it will likely never compensate. Also, it is deterministic, so the
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error is not averaged over several runs.
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Figure 2.8: Results of the unmixing of the hyperspectral image Urban. Values for
SVCA are the medians over 30 trials. One point is out of the plot; for p = 200,
SVCA-med has an error of 14.55%.

In Fig. 2.9, we show the abundances maps corresponding to the unmixing of Urban.
They indicate the proportion of every of the 6 extracted endmembers in the pixels
of the image. We see that the smoothed algorithms obtain a better separation than
the non-smoothed ones. For example, the fourth endmember extracted by SVCA and
SSPA corresponds to grass, and it is well separated by these algorithms, while VCA
and SPA mix it with asphalt and dirt. The second endmember extracted by SVCA
and SSPA corresponds to metallic rooftops, and it is well separated while VCA mixes
it with other materials and SPA does not clearly identify it and produces a blurred
picture. The corresponding spectral signatures can be found in Fig. 2.10.

The results from our experiments on other hyperspectral images are in Figs. 2.11
to 2.13 for Terrain, and in Figs. 2.14 to 2.16 for San Diego.
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2.6 Discussion and conclusion

Let us discuss some additional points regarding SVCA and SSPA.

Which algorithm should one use? SVCA allows to generate different solutions,
among which the best solution w.r.t. reconstruction error can be found. Therefore, in
practice and when time and resources allow, we recommend running SSPA once and
SVCA several times, with different values of p, and keep the best solution.

Which aggregation should one use? Apart from the average and the median,
other aggregation methods could perform better depending on the noise statistics and
data set at hand. For instance, the authors in [42] use an aggregation on manifold
in the different context of sparse matrix factorization to better take into account the
structure of the columns of A.

How to select p? Choosing a value for the parameter p is crucial and not trivial; a
strategy to determine it is an interesting direction of research. It could also be useful
to consider a different value of p for every vertex, as the number of proximal latent
points typically varies for each vertex.

Spectral variability in blind HU In blind HU, an issue with separable NMF
algorithms is that they identify a single pixel to represent a material. It is however
well-known that the spectral signature of an endmember may vary across the pixels
of the image, for example because of differences in light intensity or orientation. This
is known as spectral variability. By construction, most separable NMF algorithms,
such as VCA and SPA, will identify pure pixels that do not represent well the average
behaviour of a material, but rather a pure pixel located at the boundary of the convex
hull of the variations of the spectral signature of that endmember. Therefore, working
on the smoothed data set, which averages every subset of p data points, allows to
better represent this average behaviour.

Designing other smoothed separable NMF algorithms The proximal latent
points assumption could be used to generalize other separable NMF algorithms. In
this work, we validated the idea on the two most widely used separable NMF algo-
rithms, namely VCA and SPA, but the same idea can be applied to any separable
NMF algorithms such as SNPA [32].

Conclusion In this chapter, we investigated the smoothed separable NMF model
that strengthens the separability assumption by assuming the presence of several data
points nearby each column of the basis matrix A. Inspired by the existing algorithm
ALLS, we developed smoothed variants of two separable NMF algorithms, namely
VCA and SPA. Empirically, we showed that our smoothed methods outperform both
the non-smoothed ones and ALLS, for both synthetic data sets and for the unmix-
ing of real-world hyperspectral images. This shows that the proximal latent points



56

assumption is verified in hyperspectral images, and that smoothed separable NMF al-
gorithms are a more effective tool for hyperspectral unmixing. Further works include
the design of other smoothed separable NMF algorithms, and the use of SVCA and
SSPA for other applications, in particular in machine learning [7, 11].
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(a) VCA, error= 6.24%

(b) SVCA p=200, error= 5.24%

(c) SPA, error= 9.46%

(d) SSPA p=4200, error= 5.72%

Figure 2.9: Abundance maps of the unmixing of the Urban hyperspectral image (that
is, reshaped rows of X) with different algorithms. Endmembers have been reordered
for easier comparison. Parameters p have been chosen as the best from Fig. 2.8. Error
corresponds to minX≥0 ‖B − AX‖F /‖B‖F . For VCA and SVCA, we show the best
solution over 30 trials.
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Figure 2.10: Spectral signatures from the unmixing of the Urban hyperspectral image
(that is, columns of W ) with different algorithms. Parameters p have been chosen as
the best from Fig. 2.8. For VCA and SVCA, we show the best solution over 30 trials.
Spectral signatures correspond to the abundance maps shown in Fig. 2.9, in the same
order. For example, for SSPA, the spectral signatures correspond to (1) dirt, (2) roof
tops, (3) trees, (4) grass, (5) a mixture of road and dirt, and (6) roads.
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Figure 2.11: Results of the unmixing of the hyperspectral image Terrain. Values for
SVCA are the medians over 30 trials.
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(a) VCA, error= 4.03%

(b) SVCA p=420, error= 3.25%

(c) SPA, error= 5.01%

(d) SSPA p=220, error= 3.65%

Figure 2.12: Abundance maps of the unmixing of the Terrain hyperspectral image
(that is, reshaped rows of H) with different algorithms. Endmembers have been
reordered for easier comparison. Parameters p have been chosen as the best from
Fig. 2.11. Error corresponds to minH≥0 ‖X −WH‖F /‖X‖F . For VCA and SVCA,
we show the best solution over 30 trials.
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Figure 2.13: Spectral signatures from the unmixing of the Terrain hyperspectral image
(that is, columns of W ) with different algorithms. Parameters p have been chosen
as the best from Fig. 2.11. For VCA and SVCA, we show the best solution over 30
trials. Spectral signatures correspond to the abundance maps shown in Fig. 2.12, in
the same order.
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Figure 2.14: Results of the unmixing of the hyperspectral image San Diego. Values
for SVCA are the medians over 30 trials.
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(a) VCA, error= 3.95%

(b) SVCA p=2600, error= 3.74%

(c) SPA, error= 5.90%

(d) SSPA p=2000, error= 4.32%

Figure 2.15: Abundance maps of the unmixing of the San Diego hyperspectral image
(that is, reshaped rows of H) with different algorithms. Endmembers have been
reordered for easier comparison. Parameters p have been chosen as the best from
Fig. 2.14. Error corresponds to minH≥0 ‖X −WH‖F /‖X‖F . For VCA and SVCA,
we show the best solution over 30 trials.
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Figure 2.16: Spectral signatures from the unmixing of the San Diego hyperspectral
image (that is, columns of W ) with different algorithms. Parameters p have been
chosen as the best from Fig. 2.14. For VCA and SVCA, we show the best solution over
30 trials. Spectral signatures correspond to the abundance maps shown in Fig. 2.15,
in the same order.



Chapter 3

Branch-and-bound for Sparse
NNLS

“Beware of bugs in the above code; I have only proved it correct, not
tried it.”

– Donald Knuth

In this chapter, we propose a novel algorithm to solve exactly the k-sparse NNLS
problem (1.3). As a reminder, it consists in

min
x≥0
‖Ax− b‖22 such that ‖x‖0 ≤ k,

given A ∈ Rm×r, b ∈ Rm, and a sparsity parameter k ∈ N. We also propose an
extension of this algorithm to solve the biobjective sparse NNLS problem (1.4), that
we recall here,

min
x≥0
{‖Ax− b‖22, ‖x‖0}.

This algorithm is based on a dedicated branch-and-bound strategy, and it is able to
compute an optimal solution even in complicated cases such as noisy or ill-conditioned
data, where traditional approaches fail. We show that our proposed algorithm scales
well, despite the combinatorial nature of the problem. We illustrate the advantages
of the proposed technique on synthetic data sets, as well as a real-world hyperspectral
image.

The content of this chapter is mainly extracted from [60, 61]:

60. Nadisic, N., Vandaele, A., Gillis, N. & Cohen, J. E. Exact biobjective k-sparse
nonnegative least squares in 29th European Signal Processing Conference (EU-
SIPCO) (2021), 2079–2083.

61. Nadisic, N., Vandaele, A., Gillis, N. & Cohen, J. E. Exact sparse nonnegative
least squares in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2020), 5395–5399.
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3.1 Introduction
As discussed in Section 1.2, the k-sparse NNLS problem (1.3) is key in many applica-
tions. This combinatorial problem is hard to solve exactly, with

(
r
k

)
possible supports

for x. In most cases practitioners use heuristics such as greedy algorithms that have
limited guarantees. However, in critical applications, computing an exact solution
can be useful. Notably, with an exact solution we know that the reconstruction error
comes from model misfit or acquisition noise and not from the optimization algorithm.

A brute-force algorithm would solve a NNLS subproblem for each possible support
and select the solution with minimal error. This is the approach used by [20] in the
context of sparse NMF. However, the number of possible supports grows exponen-
tially with r and k. To avoid computing all of them, the solution we propose can
prune the search space using a branch-and-bound strategy. With this technique, the
problem is still solved exactly, but much fewer NNLS subproblems are solved, leading
to reasonable computing times even for large n and k.

The k-sparse NNLS problem can also be reformulated as a mixed-integer quadratic
program (MIQP), and as such can be solved with a generic solver such as CPLEX.
We will discuss such reformulation in next section. However, this problem features a
strong structure that generic solvers are mostly indifferent to, and we will see in this
chapter the advantages of a specific algorithm designed to leverage this structure.

3.2 Formulation as a MIQP
A previous work by Bourguignon et al. [15] provides a MIQP reformulation for the
k-sparse least squares problem. We reused this formulation and added nonnegativity
constraints, leading to the following problem:

min
x

1

2
x>A>Ax− b>Ax s.t.


x ≥ 0

1>z ≤ k
xi ≤Mzi for all i

, (3.1)

where

• z ∈ {0, 1}r is a vector of auxiliary binary variables, that allows us to formulate
linearly the k-sparsity constraint.

• M ∈ R+ is the so-called “big-M” constant.

This is a mixed-integer quadratic problem (MIQP) with linear constraints. In (3.1),
the second constraint ensures that the binary vector z has at most k entries set to
1, while the third constraint ensures that for each zero entry of z the corresponding
entry of x is also zero. The value of M can affect significantly the performance of
the solver, and it should be as small as possible to accelerate the solving, while being
larger than the largest entry of x to ensure that the solution is in the feasible set.

This formulation can be tackled directly by a generic solver, but we will see in the
experiments of Section 3.5 that this is less performant than a specifically-designed
algorithm. We present such algorithm in the next section.
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3.3 The algorithm Arborescent
In this section we present the main contribution of this chapter, that is, a branch-and-
bound algorithm to solve the k-sparse NNLS problem exactly. This algorithm is called
Arborescent1. In Arborescent, the possible patterns of zeros (that is, the possible
supports) in the solution vector are enumerated on a tree, as shown in Figure 3.1.
Each node represents an over-support K of x. The entries of x indexed by K are those
that are not constrained to be 0. The cardinality of K is equal to the current tree
depth. Exploring a node means solving the following NNLS subproblem

f∗(K) = min ||A(:,K)x(K)− b||22 such that x(K) ≥ 0, (3.2)

where x(K) is the subvector of x whose entries are specified by the index subset
K ⊆ {1, 2, . . . , r}. The value f∗(K) is the error associated with the node correspond-
ing to K. In Arborescent, an active-set algorithm [70] is used as the NNLS solver.
The key property of active-set methods is that they solve the NNLS problem exactly,
without a need for parameter tuning. Note that active-set methods allow for a warm
start, that is, the algorithm can be initialized at the current node with the solution
from a previous node. This significantly speeds up the iterative process since it starts
close to the optimal solution.

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4

Figure 3.1: Example of the Arborescent search tree, for r = 5 and k = 2.

Branch. The root of the tree represents the unconstrained problem. No component
of x is constrained to zero, that is, K = {1, 2, . . . , r}. At this root node, the support
of x is required to have cardinality at most k′ = r (unconstrained). From this root
we generate one child node for each component of x, where the respective component
is not in the support (and thus constrained to zero). The cardinality of the support
of x in these children nodes is therefore at most k′ = r − 1. The tree is constructed
recursively, by constraining one additional component to be equal to zero per node.
When the tree has reached the depth were the cardinality of the support set is k′ = k,
the desired sparsity is obtained and the leaf nodes at this depth represent feasible
solutions to (1.3).

1The name stands for Arborescent Realizes a Branch-and-bound Optimization to Require Explicit
Sparsity Constraints to be Enforced in NNLS Tasks.
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As described above, several nodes of the Arborescent tree would correspond to
the same over-support K. For example, in Figure 3.1 there would be a redundant
node {0, 0, x3, x4, x5} as the child of both {0, x2, x3, x4, x5} and {x1, 0, x3, x4, x5}. To
avoid this redundant computations, we fix the order of the entries of x in the root
node and keep this order in all nodes. This way, we can deduce trivially if a node has
already been explored. In the root node, we order the entries of x in order of increasing
magnitude of the entries of the unconstrained solution. Let x∗ be the optimal solution
of the NNLS problem (1.2), we reorder the entries of x∗ so that x∗1 ≤ x∗2 ≤ · · · ≤ x∗n.

Bound. As an additional entry of x is constrained to be zero for each child node,
the error of a given node will always be greater than or equal to the error of its
parent, by construction. As soon as we reached a leaf of the tree, we obtain a feasible
solution whose error is therefore an upper bound for (1.3). Hence if a given node has
an error greater than this upper bound, all the children of this node will also have
a higher error, and it can be safely pruned. A key element of a branch-and-bound
algorithm is the strategy used to explore the tree. A relevant exploration can quickly
lead to a good admissible solution, and thus to a bound allowing the pruning of large
parts of the search space. As described above, in Arborescent, the solution x∗ to the
unconstrained problem is computed in the root node and the components of x∗ are
sorted in ascending order. Thereafter, the exploration is done depth-first, and “left-
first”. Among all children of a node, the node furthest left is explored first, that is, the
components that are closest to zero in the unconstrained solution are constrained first.
This is based on the hypothesis that if a component is close to zero in the solution of
the unconstrained problem, it is more likely to be zero in the optimal solution of the
constrained problem. We have observed empirically that this approach outperforms
more complex strategies, including greedy node selection (that is, selecting the node
with the lowest error).

Pseudocode. Arborescent is detailed in Algorithm 3.1. The set P is the pool of
nodes. On line 5, it is initialized with the root node, that has a full support (no
component is constrained). On line 7, a node is selected in P , following the strategy
described above, and removed from P on line 8. On line 9, the NNLS subproblem
defined by A and b limited to the corresponding over-support K is solved using the
initialization x. If the error is larger that the current lowest error, no child node can be
optimal, and the node is pruned (line 11). Otherwise, the exploration continues. If the
desired sparsity level k is not reached, a new node is generated for every component
of the over-support (lines 14 and 15). If the value of k is reached, the error of the
current node is compared to the lowest error found so far (line 17), and if it is lower,
it replaces it (line 18).

Computational complexity. In the worst case, Arborescent has to build and
explore the whole tree, that is, to solve a number of NNLS subproblems equal to∑r
l=k

(
r
l

)
. In the best case, all nodes except the leftmost ones are pruned, so the

number of NNLS subproblems to solve is
∑r
l=k l. In practice, the number or nodes

explored is far from the worst case; see Section 3.5.2.
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Algorithm 3.1: Arborescent
Input: A ∈ Rm×n+ , b ∈ Rm+ , k ∈ {1, 2, . . . , r}
Output: xbest = arg min

x≥0
||Ax− b||22 s.t. ||x||0 ≤ k

1 Init x0 ← NNLS(A, b)
2 Sort the elements in x0 in increasing order
3 Init K0 ← {1, ..., r}
4 Init best_error ← +∞
5 Init P ← {(K0, x0)}
6 while P 6= ∅ do
7 (K, xparent) = P .select()
8 P ← P \ {(K, xparent)}
9 (error, x)← NNLS(A(:,K), b, xparent(K))

10 if error > best_error then
11 prune (do nothing)
12 else
13 if size(K) > k then
14 foreach i ∈ K do
15 P ← P ∪ {(K \ {i}, x) }

16 else
17 if error < best_error then
18 best_error ← error
19 xbest ← x

20 return xbest



70

3.4 Biobjective extension
Although Arborescent was designed to solve the k-sparse NNLS problem, it can be
easily extended to compute the whole Pareto front for the biobjective problem (1.4),
that we remind here,

min
x≥0
{‖Ax− b‖22, ‖x‖0}.

Indeed, while exploring the search tree and computing intermediary nodes, it also
computes automatically the optimal k′-sparse solutions for all k′ ∈ {k, . . . , r}. Our
extension (that we call Arbo-Pareto) therefore consists in maintaining a list of the op-
timal k′-sparse solutions, making a comparison for every node explored, and updating
the list when a better solution is found. This almost does not affect the computational
cost of the algorithm as the cost of comparison and update is negligible compared to
the cost of the evaluation of a node.

To show that Arborescent indeed computes these solutions, we prove by contra-
diction that it cannot prune an optimal k′-sparse solution. Suppose the node γ is the
optimal k′-sparse solution for a given k′ > k, and that it is pruned by Arborescent.
Because it is pruned, its error must be larger than the error of some feasible k-sparse
solution α, f∗(γ) > f∗(α). However, there exists necessarily a parent node of α that
is k′-sparse; we call it β. By construction, f∗(α) > f∗(β), so we have f∗(γ) > f∗(β),
meaning that γ is not the optimal k′-sparse solution. This contradicts the hypothesis.

Arbo-Pareto is detailed in Algorithm 3.2. NNLS refers to the active-set method
described above. The set P is the pool of nodes, initialized with the root node (with
no entry constrained) on line 4. A node is selected from P on line 8, and removed
from P on line 9. On line 10, the NNLS subproblem restricted to the over-support
K is solved using the parent solution as initialization. If the error at the current
node is worse than the current best feasible solution, then no descending node can
be optimal, and we prune the current node (line 13). Otherwise, we continue the
exploration. If the sparsity target k is not reached, we generate one node for every
entry of the over-support (lines 16 and 17). We then compare the error of the current
node with the error of the current best k′-sparse solution, on line 18. If it is lower,
we update this error (line 19) and the Pareto front (line 20).

Note that, if k = 1, Arbo-Pareto computes the whole Pareto front. Otherwise, it
only computes the part with k′ ∈ {k, . . . , r}. Arbo-Pareto can be used on its own
to solve biobjective k-sparse NNLS problems. In Chapter 4, we present its use as a
subroutine in a MNNLS algorithm with a matrix-wise sparsity constraint.

3.5 Experiments
The code of Arborescent and the test scripts are provided in an online repository2.
All experiments were performed on a personal computer with an i5-1135G7 processor,
with a clock frequency of 2.40GHz. All algorithms are implemented in Julia.

Experiments concerning the biobjective extension of Arborescent can be found in
Chapter 4.

2http://gitlab.com/nnadisic/giant.jl

http://gitlab.com/nnadisic/giant.jl
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Algorithm 3.2: Arbo-Pareto
Input: A ∈ Rm×r+ , b ∈ Rm+ , k ∈ {1, 2, . . . , n}
Output: Pareto front S

1 Init K0 ← {1, ..., r}
2 Init x0 ← NNLS(A, b)
3 Sort the entries in x0 in ascending order
4 Init P ← {(K0, x0)}
5 Init Ei ← +∞ for all i ∈ {k, . . . , r}
6 Init Si ← ~0 for all i ∈ {k, . . . , r}
7 while P 6= ∅ do
8 (K, xparent) = P .select()
9 P ← P \ {(K, xparent)}

10 x, error ← NNLS(A(:,K), b, xparent(K))
11 k′ = size(K)
12 if error > Ek then
13 prune (do nothing)
14 else
15 if k′ > k then
16 foreach i ∈ K do
17 P ← P ∪ {(K \ {i}, x) }

18 if error < Ek′ then
19 Ek′ ← error
20 Sk′ ← x
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3.5.1 Comparison on synthetic datasets

We first consider synthetic k-sparse NNLS problems for which we compare Arbores-
cent to three algorithms:

• A homotopy algorithm, that tackles the `1-penalized problem (1.6). It is de-
scribed in more detail in Section 4.2.2. In a nutshell, the homotopy algorithm is
a heuristic that computes a set of solutions representing different tradeoffs be-
tween reconstruction error and sparsity. Among these solutions, we choose the
best k-sparse one, and we debias it by running an NNLS algorithm restricted
to its support.

• Nonnegative OMP (NNOMP) [65], a standard greedy algorithm for k-sparse
NNLS.

• CPLEX3, a generic MIP solver that solves the k-sparse NNLS problem as for-
mulated in Section 3.2. The “big-M” parameter is set to 1.1, which is reasonable
given that 0 ≤ xi ≤ 1 for all i in the synthetic data we generate, see below.
Theoretically, CPLEX should always find the same solution as Arborescent, as
both methods solve the problem exactly.

Synthetic test cases are built by generating a random matrix A ∈ Rm×r+ and a
random k-sparse vector xtrue ∈ Rr+, computing b = Axtrue, and trying to find again
xtrue with A, b and k as parameters of the sparse NNLS algorithm. We consider
four cases: well-conditioned A and noiseless b, well-conditioned A and noisy b, ill-
conditioned A and noiseless b, ill-conditioned A and noisy b. For well-conditioned A,
each entry of A is generated using the uniform distribution in [0,1] (rand(m,n) in
Matlab). For ill-conditioned A, we proceed in the same way, then compute the SVD
of A = UΣV T , replace Σ by values between 10−4 and 1 equally spaced in a logscale
(logspace(-4,0,n) in Matlab), and finally take A = UΣV T . For x, we also use
the uniform distribution in [0,1]. For the noise e added to b, we generate a vector
where each entry is generated using the normal distribution of mean 0 and variance
1 (randn(m,1) in Matlab), then rescale e ← 0.05 e

||e||2 ||b||2 so that ||e||2 = 0.05||b||2
(the noise level is 5%). We generate such data sets for three values of m: 1000, 100,
and 10, with fixed r = 10 and k = 6, for a total of 12 test settings. For each setting,
100 data sets are randomly generated, and processed by the 4 algorithms. For each
algorithm, we measure the median of the relative error ||Ax−b||2||b||2 over the 100 runs, as
well as the median computational time, and the number of successes, defined as the
number of times the support of xtrue is recovered.

Tables 3.1 to 3.3 present the results of the experiments. As expected, the exact
methods Arborescent and CPLEX always produce the same results, and they have
100% of success and a zero error in all noiseless settings. This is particularly inter-
esting when A is ill-conditioned, because then the heuristics homotopy and NNOMP
often fail to identify the support. For noisy data, Arborescent and CPLEX always

3See http://cplex.com. Although it is a closed-source commercial software, it is available for
free for academics.

http://cplex.com
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Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Err. Time Succ. Err. Time Succ. Err. Time Succ. Err. Time Succ.

Homotopy 0 0.11 100 5.03 0.14 48 0 0.19 73 5.08 0.23 36
NNOMP 0 0.21 100 4.98 0.21 97 3.18 0.21 13 5.94 0.22 8
CPLEX 0 8.38 100 4.98 9.31 99 0 5.27 100 4.97 6.69 88
Arbo. 0 1.16 100 4.98 2.8 99 0 1.35 100 4.97 3.43 88

Table 3.1: Results for m = 1000. Err. is the relative error ‖Ax− b‖2/‖b‖2 in percent.
Time is in milliseconds. Succ. is the number of successes, that is, the number of times
the algorithm recovered the support of xtrue over 100 runs.

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Err. Time Succ. Err. Time Succ. Err. Time Succ. Err. Time Succ.

Homotopy 0 0.11 100 4.98 0.12 30 0 0.14 79 5.16 0.19 24
NNOMP 0 0.21 100 4.85 0.2 78 3.4 0.19 14 5.85 0.2 2
CPLEX 0 3.37 100 4.85 4.27 80 0 2.89 100 4.83 4.31 70
Arbo. 0 0.97 100 4.85 1.68 80 0 0.97 100 4.83 2.45 70

Table 3.2: Results for m = 100. Measures are defined as in table 3.1.

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Err. Time Succ. Err. Time Succ. Err. Time Succ. Err. Time Succ.

Homotopy 0 0.1 83 3.62 0.17 16 0 0.13 70 3.15 0.17 14
NNOMP 1.63 0.13 24 3.94 0.2 11 2.47 0.16 4 4.19 0.19 2
CPLEX 0 2.43 100 2.66 4 36 0 2.6 100 2.57 3.46 19
Arbo. 0 0.75 100 2.66 2.18 36 0 1.26 100 2.57 1.93 19

Table 3.3: Results for m = r = 10. Measures are defined as in table 3.1.

perform better than the heuristics. When m = 100 with ill-conditioned A and noisy
b, they still show 70% of success while the heuristics have respectively 24% and 2%.
When m = r = 10, the success rate is low but always better than the heuristics. The
homotopy seems to handle ill-conditioned A better than NNOMP, while NNOMP
handles noise better. In all settings, Arborescent is faster than CPLEX in producing
the same result, and it is slower than the heuristics.

The experiments clearly show the advantages of using an exact method over
a heuristic, that is, to recover the true solution more often, especially with ill-
conditioned and noisy data. The tradeoff is a higher computational cost. They also
show the advantage of Arborescent over a generic solver such as CPLEX, that is a
faster computation to produce the same exact result.

3.5.2 Scalability of Arborescent

To test the scalability of Arborescent compared to CPLEX and to the brute-force
approach, we perform two new tests with the same data model as in Section 3.5.1,
in the well-conditioned and noiseless case, with fixed m = 1000. The brute-force
approach consists in generating all the

(
r
k

)
possible supports for the given k, solve the

corresponding NNLS subproblem for each support, and keep the solution with the
smaller reconstruction error. For a given test, we measure the computing time as the
median time over 10 runs; note that for a given setting all 3 algorithms produce the
same solution.

First, we vary r between 4 and 50, and run each k-sparse algorithm with k = r/2,
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Figure 3.2: Evolution of the computing time for different values of r, with k = r/2,
and fixed m = 1000. Measures for brute-force stop after r = 18

see Fig. 3.2. The computing time of the brute-force approach grows exponentially
with r. The computing time of Arborescent also grows much slower than brute-
force, meaning that our branch-and-bound strategy is able to prune the search tree
efficiently. For r < 40, Arborescent is faster than CPLEX, but the curves cross
at r = 40, meaning that for higher dimensions the search tree is too deep and our
branch-and-bound strategy is not adapted anymore. Interestingly, for r ≤ 10, even the
brute-force approach is faster than CPLEX. This can be explained by the fixed costs
of the solver CPLEX, that become non-negligible when the number

(
r
k

)
of supports

to explore is very small.
Second, we fix r = 20 and vary k between 2 and 20, see Fig. 3.3. The brute-

force approach shows a curve directly proportional to the number
(
r
k

)
of supports to

explore. Arborescent is faster than brute force, except for k equals to 2, 19, and 20.
In those cases,

(
r
k

)
is so small that brute force is fast enough. Arborescent is also

always faster than CPLEX. Its computing time does not vary much with k (except
for k > 18 where it becomes very fast), showing again its good pruning capabilities.

In the application we focus on, hyperspectral unmixing, the dimension r is often
smaller than 10 and rarely larger than 20. Therefore, our approach Arborescent
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Figure 3.3: Evolution of the computing time for different values of k, with fixed
m = 1000 and r = 20.

is more adapted than the generic solver CPLEX. In other applications with larger
dimensions, it may not always be the case.

3.5.3 Application on hyperspectral unmixing
In this section, we use Arborescent to identify the materials present in the pixels
of a hyperspectral image. We consider 3 widely used hyperspectral images, Jasper,
Samson, and Urban with precomputed dictionaries4 [85], see Table 3.4 for details.
Given B ∈ Rm×n and A ∈ Rm×r, we compute X ∈ Rr×n by solving the following
MNNLS problem with a column-wise k-sparse constraint

min
X
‖B −AX‖F s.t. X ≥ 0, and ‖X(:, j)‖0 ≤ k for all j.

This reduces to solving n independent k-sparse NNLS subproblems of the form (1.3)
with each subproblem corresponding to one pixel. We solve them with the four sparse
methods presented in Section 3.5.1, and also with an active-set method (noted AS)

4Downloaded from http://lesun.weebly.com/hyperspectral-data-set.html

http://lesun.weebly.com/hyperspectral-data-set.html
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Dataset m n r k
Jasper 198 100× 100 = 1000 4 2
Samson 156 95× 95 = 9025 3 2
Urban 162 307× 307 = 94249 6 2

Table 3.4: Summary of the datasets, for which the data is B ∈ Rm×n and the dic-
tionary is A ∈ Rm×r. We compute X ∈ Rr×n such that each column X(:, j) is
k-sparse.

Algorithm AS Homotopy NNOMP CPLEX Arbo.
Jasper Time 0.34 0.45 0.39 20.21 1.7

Error 5.71 6.99 7.49 5.94 5.94
Sparsity 2.23 1.78 1.72 1.81 1.81

Samson Time 0.18 0.19 0.31 16.34 0.68
Error 3.3 3.34 6.76 3.34 3.34
Sparsity 2.19 1.85 1.6 1.85 1.85

Urban Time 5.93 4.68 3.29 231.58 52.22
Error 7.67 8.62 8.97 7.89 7.89
Sparsity 2.62 1.9 1.7 1.9 1.9

Table 3.5: Results of the unmixing of hyperspectral images. Time is the median
running time over 10 runs, in seconds. Error is the relative error ||B −AX||F /||B||F
in percent. Sparsity is the average k-sparsity per column.

that solves the NNLS problems without sparsity constraint, to serve as a baseline.
We set the “big-M ” constant required by CPLEX as M = 1.5‖xho‖inf , where xho is
the k-sparse solution computed by the homotopy.

For each algorithm, we report the running time (median over 10 runs), the relative
reconstruction error ||B−AX||F||B||F , and the average column-wise sparsity. Table 3.5 shows
the results of the unmixing of the 3 hyperspectral images. We first note that, even
without sparsity constraint, the solutions computed are already sparse. Also, by
imposing a column-wise k-sparsity of 2, the sparse methods generate solutions with
an average column-wise sparsity smaller than 2, meaning that some columns are
naturally 1-sparse. The heuristics homotopy and NNOMP enforce sparsity at the
cost of a larger reconstruction error, and their speed is on the same order as AS. The
exact methods are able to enforce sparsity while limiting the error increase. They are
slower than the heuristics, but Arborescent is significantly faster than CPLEX. For
Samson, the homotopy produces a solution with the same error and sparsity as the
exact methods, meaning that the problem is well-conditioned and “easy” enough so
that this heuristic can recover the true solution, or a very close one.
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3.6 Conclusion
We proposed Arborescent, a dedicated branch-and-bound algorithm to tackle the
k-sparse nonnegative least squares problem (1.3) exactly. It works in very general
settings, where existing approaches such as `1-penalized or greedy algorithms fail
to identify the support of the optimal solution. The branch-and-bound technique
allows for substantial pruning of the search space, so this combinatorial problem can
be solved exactly with a reduction of computation time over a generic solver. The
combination of relative speed, scalability, and an exact solution provide a broadly
applicable technique for medium-scale sparse nonnegative least squares problems.

We also proposed Arbo-Pareto, a biobjective extension of Arborescent. It is able
to compute the Pareto front of the biobjective sparse NNLS problem (1.4), that is
compute a set a solutions with different tradeoffs between error and sparsity. It uses
the fact that when Arborescent compute a k-sparse solution to a given NNLS problem,
it also computes as a side-effect the k′-sparse solutions for k′ ∈ {k, k+ 1, . . . , r}. This
extension will be central in the matrix-wise sparsity-constrained approach presented
in the next chapter.

In practice, computing time is rarely critical in hyperspectral unmixing tasks, as
they are usually performed offline and once and for all. Also, such images are often
taken from airplanes and require specific and expensive hardware, so the acquisition
cost is usually very high and dominates the unmixing cost. Therefore, it is worth
spending more computing time in exchange for a guaranteed result, and the end-user
is assured that the potential residual error comes from model misfit or acquisition
noise, and not from the optimization process.



78



Chapter 4

Matrix-wise `0-constrained
NNLS

“There’s a fine line between fishing and just standing on the shore
like an idiot.”

– Steven Wright

In this chapter, we focus on the sparse MNNLS problem, that we remind here,

min
X
‖B −AX‖2F such that X ≥ 0 and X is sparse.

As opposed to most previous works that enforce sparsity of X column- or row-wise,
we introduce a novel formulation with a matrix-wise sparsity constraint. Then, we
present a two-step algorithm to tackle this problem. The first step divides sparse
MNNLS in subproblems, one per column of the original problem. It then uses differ-
ent algorithms to produce, either exactly or approximately, a Pareto front for each
subproblem, that is, to produce a set of solutions representing different tradeoffs be-
tween reconstruction error and sparsity. The second step selects solutions among
these Pareto fronts in order to build a sparsity-constrained matrix that minimizes the
reconstruction error. We perform experiments on facial and hyperspectral images,
and we show that our proposed two-step approach provides more accurate results
than state-of-the-art sparse coding heuristics applied both column-wise and globally.

The content of this chapter is mainly extracted from [57]:

57. Nadisic, N., Cohen, J. E., Vandaele, A. & Gillis, N. Matrix-wise `0-constrained
sparse nonnegative least squares. preprint arXiv:2011.11066 (2022).

4.1 Introduction
In Section 1.4 we saw that in NNLS problems with multiple right-hand sides, spar-
sity is often enforced column- or row-wise. For example, a column-wise k-sparsity
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constraint lead to Problem (1.8) that we remind here,

min
X
‖B −AX‖2F such that X ≥ 0 and ‖X(:, j)‖0 ≤ k for all j.

However, in some applications, setting the sparsity parameter k is tricky, as the
relevant value can vary for different columns. For example, in hyperspectral unmixing,
pixels are often composed of different numbers of materials. Therefore, we consider a
more global approach, that we coin as matrix-wise q-sparse MNNLS :

min
X

1

2
‖B −AX‖2F such that X ≥ 0 and ‖X‖0 ≤ q, (4.1)

where ‖X‖0 =
∑
j ‖X(:, j)‖0 and q is a matrix-wise sparsity parameter, hence enforc-

ing an average sparsity q/n for the columns of X.
Note that (4.1) could theoretically be solved by any column-wise k-sparse NNLS

algorithm, because (4.1) is equivalent to the vectorized form

min
x̄
‖ vec(B)− (A⊗ I)︸ ︷︷ ︸

Ω

x̄‖22 such that x̄ ≥ 0 and ‖x̄‖0 ≤ q, (4.2)

where ⊗ is the Kronecker product, I is the identity matrix of appropriate dimension,
and vec(B) denotes the column vector obtained by stacking the columns of B on
top of one another. Problem (4.2) is a k-sparse NNLS problem, but in practice
its dimensions make it difficult to solve directly. Denoting Ω = A ⊗ I, we have
Ω ∈ R(mn)×(rn), which is particularly problematic in hyperspectral unmixing where
the dimension n can reach tens of thousands.

It is possible to implement some k-sparse NNLS algorithms in a non-naive way to
solve (4.2) efficiently without actually allocating Ω, and we detail such implementation
of a greedy algorithm in Section 4.3.2. However, even in this case, when n is large
then the problem to solve is huge and the computing time can become too high, see
Section 4.4 for an experimental illustration.

Related work Most approaches that tackle sparse MNNLS were actually intro-
duced in the context of sparse NMF, see our brief review in Section 1.7. Some similar
models have been studied, such as simultaneous sparse approximation [74, 79], where
X is constrained to be block-sparse, that is to have sparse columns sharing the same
support. The assumptions of these models, the algorithms to solve them, and their
applications are far from our focus, so detailing them is out of the scope of this work.

Contribution and outline of the chapter The main goal of this work is to
describe a novel method able to solve efficiently the matrix-wise q-sparse MNNLS
problem (4.1), even in large dimensions. This method can be summarized by two
main steps:

1. Problem (4.1) is divided in n subproblems of the form (1.4) and, for each of
them, the Pareto front is computed with existing algorithms.
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2. One solution per column (hence per Pareto front) is selected to build a solution
to Problem (4.1), that is, a q-sparse matrix. This combinatorial step is solved
exactly with a dedicated algorithm.

To the best of our knowledge, this work is the first to tackle specifically Problem (4.1).
Note that the algorithms used in the first step are not original contributions. The
contributions lie rather in the use of these existing algorithms to generate the Pareto
fronts of the subproblems, and the combination of these fronts with a novel algorithm
to obtain a q-sparse matrix.

This chapter is organized as follows. In Section 4.2, we detail the three algorithms
used to generate Pareto fronts. In Section 4.3, we present the main contribution of
this work, that is, an algorithm to solve Problem (4.1). We illustrate the effectiveness
of our proposed method with experiments on real-life facial and hyperspectral image
datasets in Section 4.4, and conclude in Section 4.5.

4.2 Computing the Pareto fronts

In the following, we rely on three types of sparse NNLS algorithms to generate Pareto
fronts, that is, to solve Problem (1.4), that we remind here,

min
x≥0
{‖Ax− b‖22, ‖x‖0}.

The branch-and-bound algorithm Arborescent and its biobjective extension have been
detailed in Chapter 3. Greedy and homotopy algorithms are discussed below.

4.2.1 Greedy algorithms

Greedy algorithms are one of the most popular approaches for solving approximately
the k-sparse NNLS problem (1.3), and they are briefly described in Section 1.2. Inter-
estingly, because they select components one after the other, greedy algorithms can
be used as a proxy to compute an approximation of the Pareto front of the corre-
sponding biobjective sparse NNLS problem. Indeed, the solution at the i-th iteration
of the algorithm is i-sparse. By running the algorithm with a sparsity target k, we
also compute, as a side effect, some k′-sparse solutions for k′ ∈ {1, . . . , k}. Therefore,
to obtain an approximation of the Pareto front, it suffices to return all intermediate
solutions instead of only the final one.

In this chapter, we will only focus on Nonnegative OMP (NNOMP) for concise-
ness, but this approach could be easily generalized to similar greedy algorithms, see
Section 1.2. NNOMP was first introduced by [16], but many variants exist, and imple-
mentations details can have a significant impact on the performance of this algorithm;
we refer the interested reader to [65].
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4.2.2 Homotopy algorithm
Sparse methods based on the `1-norm are very popular. They are discussed in Sec-
tion 1.3 and we remind here the formulation of the `1-penalized NNLS problem (1.6),

min
x
‖Ax− b‖22 + λ‖x‖1 such that x ≥ 0.

The parameter λ is a nonnegative constant controlling the tradeoff between error and
sparsity. Choosing a suitable value for λ for a given application is not straightforward,
as there are no explicit relation between this value and the actual sparsity of the
solution.

To overcome this issue, homotopy algorithms have been introduced. They generate
the full regularization path of a given `1-penalized NNLS problem, that is, the set of
the solutions for all possible values of λ. They allow the user to choose the relevant
solution within this path, each solution representing a different trade-off between
sparsity and reconstruction error. The first homotopy algorithm has been introduced
by [66], for sparse least squares with no nonnegativity constraint. Variants have been
developed by [22] and [21]. [44] introduced a variant to deal specifically with the
nonnegativity constraint.

In a nutshell, the homotopy algorithm uses the KKT conditions (necessary con-
ditions for optimality) to first find the value λmax for which the optimal solution of
`1-penalized NNLS is x = 0 for any λ ≥ λmax, and then to compute the next smaller
values of λ for which the support (that is, the set of non-zero entries) of the optimal
solution changes (one zero entry becomes non-zero, or the other way around). This
is similar in spirit to active-set methods, akin to the simplex algorithm for linear
programming. These values of λ are called breakpoints, between which the support of
the optimal solution does not change; see Figs. 4.1 and 4.2 for an illustration.

The strength of the homotopy algorithm is to generate the full regularization path,
that is, the set of optimal solution for all possible values of λ, for the same cost as a
standard active-set algorithm. The solutions in this path represent different tradeoffs
between reconstruction error and sparsity, and as such this path can be seen as an
approximation of the Pareto front in Problem (1.4).

Although the homotopy algorithm is not an original contribution, we include be-
low its detailed description and development. This is not necessary to understand
our contribution, and the reader focusing on our proposed algorithm for matrix-wise
q-sparse MNNLS can skip to Section 4.3 (page 86).

Optimality conditions

The homotopy algorithm uses the first-order optimality conditions, that is, the KKT
conditions, to determine the breakpoints and the supports of the corresponding solu-
tions. Because x is nonnegative, we have ‖x‖1 =

∑
i xi = eTx, where e is the vector

of all ones whose dimension will be clear from context. Therefore, the `1-penalized
NNLS problem can be written as follows

min
x≥0

f(x), where f(x) =
1

2
‖Ax− b‖22 + λeTx. (4.3)
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λ
xi = 0

xi

λ = 0 λ4 λ3 λ2 λmax

x1

x2

x3

Figure 4.1: Example of a solution path of a homotopy algorithm,
depending on λ, for a problem of 3 variables. Vertical dotted lines
correspond to breakpoints.

‖Ax− b‖220

‖x‖1

λmax

‖b‖22

λ2

λ3

λ4

λ = 0

Figure 4.2: Trade-off between the `1-norm and the error ‖Ax− b‖22
corresponding to the solution path in Fig. 4.1.

The KKT conditions are x ≥ 0,

∇f(x) = A>A︸ ︷︷ ︸
P

x−A>b︸︷︷︸
`

+λe ≤ 0, (4.4)

xi(A
>Ax−A>b+ λe)i = 0 for all i. (4.5)

Eq. (4.5) is the complementary condition; for every entry of x, either the entry itself
or the corresponding gradient entry is equal to zero. To simplify the notation, let us
define P = A>A and ` = A>b.

As f is a convex function and the feasible set contains a Slater point (e.g., x = e),
the KKT conditions are necessary and sufficient. Therefore, any solution x satisfying
them is optimal. Suppose we know the optimal support, that is, the set K such that
x(K) > 0 and x(K̄) = 0, where K̄ = {1, 2, . . . , n} \ K. Then

x(K) > 0⇒ P (K,K)x(K)− `(K) + λe = 0

⇒ x(K) = P (K,K)−1(`(K)− λe) ≥ 0, (C1)

and
Px− `+ λe ≥ 0⇒ P (K̄,K)x(K)− `(K̄) + λe ≥ 0. (C2)
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Replacing x(K) in (C2) by (C1), we have

P (K̄,K)[P (K,K)−1(`(K)− λe)]− `(K̄) + λe ≥ 0.

Let us simplify the notation. Let

aK = P (K,K)−1`(K), and bK = P (K,K)−1e. (4.6)

We can rewrite (C1) as
aK − λbK ≥ 0. (C1b)

Note that the dimension of aK and bK is the cardinality of K. Let

cK = P (K̄,K)aK − `(K̄), and dK = P (K̄,K)bK − e.

We can rewrite (C2) as
cK − λdK ≥ 0. (C2b)

Note that the dimension of cK and dK is the cardinality of K̄. Moreover, Equations
(C1b) and (C2b) are linear in λ: Given K, we can easily compute aK, bK, cK, dK.

Algorithm description

The goal of the homotopy algorithm is to compute breakpoints and their correspond-
ing supports. It starts with an empty support, corresponding to the zero vector for
any λ ≥ λmax, and iteratively adds or removes entries to the support while decreasing
the value of λ.

The first step to build the regularization path is to find the first breakpoint λmax,
that is, the minimum value of λ such that the solution is the zero vector. If the
optimal solution is x = 0, that is, K = ∅ and K̄ = {1, 2, . . . , n}, then from Eq. (4.4)
we have λ ≥ max

i
`i. Therefore, the first breakpoint is

λmax = max
i
`i = max

i
(A>b)i = max

i
A(:, i)T b.

The index i1 = arg max
i
`i is the first to enter the support1, thus for λ2 ≤ λ < λmax

we have K = {i1}.
From a given support Kj , the next breakpoint λj+1 ≤ λj is the largest value of λ

that violates one of the conditions (C1) or (C2). If (C1) is violated then a variable will
leave the support, that is, a positive entry will become zero. Denoting k∗ the index
of this entry, we have Kj+1 = Kj \ {k∗}. If (C2) is violated then a variable will enter
the support, that is, a zero entry will become positive, Kj+1 = Kj ∪ {k∗}.

Let us consider (C1). We have aK(k)− λbK(k) ≥ 0 for all k so

λj+1 ≥ max
{k|bK(k)<0}

aK(k)

bK(k)
.

1If two of more columns maximize the value of `i, we have to pick one to start the homotopy. If
we always pick the one with smallest index, then the algorithm behaves normally, except that at the
next iteration we will have λj+1 = λj . This is similar to Bland’s rule for the simplex algorithm.
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Similarly, for (C2) we have cK(k)− λdK(k) ≥ 0 for all k so

λj+1 ≥ max
{k|dK(k)<0}

cK(k)

dK(k)
.

Therefore,

λj+1 = max

(
max

{k|bK(k)<0}
aK(k)

bK(k)︸ ︷︷ ︸
Case 1

, max
{k|dK(k)<0}

cK(k)

dK(k)︸ ︷︷ ︸
Case 2

)
.

The algorithm is detailed formally in Algorithm 4.1. Note that, inside the algorithm
loop, once a support K is identified, getting the corresponding optimal solution is
straightforward. From Eq. (4.6), if aK is nonnegative, then the unbiased optimal
solution of the NNLS problem is the vector x∗ such that x∗(K̄) = 0 and x∗(K) = aK.
If aK has negative entries, then we can compute the unbiased solution with a standard
NNLS solver, with x∗(K̄) = 0 and x∗(K) = arg min

x≥0
‖P (K,K)x− l(K)‖22.

Algorithm 4.1: Homotopy algorithm for sparse NNLS
Input: A ∈ Rm×r, b ∈ Rm
Output: Breakpoints λj , corresponding supports Kj and solutions x∗j , for all

j
1 i1 ← arg max

i
`i

2 K ← {i1} ; λ1 = λmax = `i1 , j ← 1
3 while λj > 0 do
4 j ← j + 1
5 Compute aK , bK , cK , dK
6 λC1 ← max{k|bK(k)<0}

aK(k)
bK(k) , and k

∗
C1 ← corresponding argmax

7 λC2 ← max{k|dK(k)<0}
cK(k)
dK(k) , and k

∗
C2 ← corresponding argmax

8 if λC1 ≥ λC2 then
9 λj ← λC1

10 K ← K \ {k∗C1}
11 else if λC1 < λC2 then
12 λj ← λC2

13 K ← K ∪ {k∗C2}
14 x∗j (K̄)← 0

15 if aK > 0 then
16 x∗j (K)← aK

17 else
18 x∗K = arg min

x≥0
‖A(:,K)x− b(K)‖22
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Computational cost

As explained by [44], the time complexity of one iteration of the homotopy algo-
rithm is the same as one iteration of the standard active-set algorithm [46], that is,
O(r3) operations. It is dominated by the computation of aK, that entails solving a
linear system in at most r variables. The number of iterations equals the number
of breakpoints, which is in practice similar to those of the active-set. In the worst
case, active-set methods might require an exponential number of iterations, up to
O(2r), as the simplex algorithm for linear programming. However, in practice, we
have observed that it typically requires much less iterations, of the order of O(r).
In particular, when P−1 is diagonally dominant, we have bK > 0, so (C1) is never
violated. As a result, when λ decreases, no positive entry of x becomes zero. We
only add entries to the support, so the homotopy algorithm will be done in at most
r iterations. In practice, even when this condition is not met, we have observed that
adding entries to the support happens far more often than removing entries.

As the homotopy algorithm solves a series of `1-penalized NNLS problems, there
exist conditions under which it is guaranteed to recover the correct supports, that is,
the supports of the solutions of the corresponding `0-constrained NNLS problems; see
[40] and the references therein.

4.3 Solving matrix-wise q-sparse MNNLS

In this section, we study how to tackle matrix-wise q-sparse MNNLS, that is, Prob-
lem (4.1). First, we present the key contribution of this work, that is a two-step
algorithm to solve Problem (4.1). Then, we show how the greedy algorithm NNOMP
can be implemented specifically for Problem (4.1) to avoid the costly reformulation
from Eq. (4.2).

4.3.1 A two-step algorithm for matrix-wise q-sparse MNNLS

In this section we present the main contribution of this chapter, that is, a two-step
algorithm to solve Problem (4.1). This algorithm is called Salmon2 and it is detailed
in Algorithm 4.2. The motivation behind it is to divide the large matrix-wise problem
into small one-column subproblems, solve them, and then combine their solutions to
build a global solution.

Step 1 corresponds to lines 1 to 11. It consists in, given the data matrix B and the
dictionary A, running an algorithm to generate a Pareto front for every column of B,
that is, with input A and b = B(: j) for all j. This can be done by any of the three
Pareto-front-generating methods presented in Section 4.2; exactly with Arborescent
and approximately with NNOMP and the homotopy algorithm. From these fronts,
we build a cost matrix C where each column represents a column j of X, each row
represents a k-sparsity between 0 and r, and each entry is the reconstruction error of

2The name stands for Salmon Applies `0-constraints Matrix-wise On NNLS problems.
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Algorithm 4.2: The algorithm Salmon
Input: Data matrix B ∈ Rm×n, dictionary A ∈ Rm×r, sparsity target q ∈ N
Output: X∗ ∈ Rr×n

1 Init matrix C ∈ Rr×n, for all i and j, C(i, j)←∞
2 Init solutions Soli,j for all i and j
3 for each j ∈ {1, . . . , n}
4 {x∗t }∀t ← front_generator(A,B(:, j)) // Arborescent, NNOMP, or

homotopy
5 for each t
6 k ← ‖x∗t ‖0
7 err ← ‖B(:, j)−Ax∗t ‖22
8 for each i ∈ {k, . . . , r}
9 if err < C(i, j) then

10 C(i, j)← err
11 Soli,j ← x∗t

12 Init cursors, for all j ∈ {1, . . . , n}, kj ← 0
13 Init matrix G ∈ Rr×n
14 for each i ∈ {1, . . . , r}, j ∈ {1, . . . , n}
15 G(i, j)← (C(0, j)− C(i, j))/i

16 while
∑
j kj < q and max(i,j) G(i, j) > 0 do

17 i∗, j∗ ← argmax(i,j) G(i, j)

18 δ ← i∗ − kj∗
19 kj∗ ← i∗

20 for each i ∈ {1, . . . , i∗}
21 G(i, j∗)← 0

22 for each i ∈ {i∗ + 1, . . . , r}
23 G(i, j∗)← C(i∗,j∗)−C(i,j∗)

i−i∗

24 if
∑
j kj > q − r + 1 then

25 for each (i, j) such that i ∈ {kj + 1, . . . ,min(r, kj + q −∑l>j kl)}
26 G(i, j)← 0

27 for each j ∈ {1, . . . , n}
28 X∗(:, j)← Solkj ,j
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the k-sparse solution of column j. Formally, for all i ∈ {0, . . . , r} and j ∈ {1, . . . , n},

C(i, j) ≈ min
x≥0
‖B(:, j)−Ax‖22 s.t. ‖x‖0 ≤ i,

and Soli,j stores the corresponding argmin, that is the best i-sparse solution for
column j.

Remark 4.1 The algorithms used to generate the Pareto front in step 1 do not nec-
essarily generate one k-sparse solution for a each k; they may generate more than one
solution, or no solution at all for a given k. For example, NNOMP selects columns
of A sequentially, but some of them may not have a positive weight when solving the
corresponding NNLS. The loop on line 8 ensures that, if there exists some k for which
no k-sparse solution is generated, then the (k − 1)-sparse solution is used instead (or
the (k − 2)-sparse one if no (k − 1)-sparse solution is generated, and so on). The
condition on line 9 ensures that, if there are several k-sparse solutions for a given k,
then only the best one is kept.

Once C is computed, step 2 consists in selecting one solution per column to build
the solution matrix X, that is, it consists in choosing the sparsity level for each
column of X. This selection step is a combinatorial problem, similar to an assignment
problem. Let us define the binary variables zi,j ∈ {0, 1} for i ∈ {0, 1, . . . r} and
j ∈ {1, 2, . . . n} such that zi,j = 1 if and only if the jth column of X is i-sparse.
The variable z encodes which sparsity level is selected for each column of X. Given
the cost matrix C computed in step 1, step 2 requires to solve the following integer
program

min
z∈{0,1}r×n

∑
i,j

zi,jC(i, j)

such that
∑
i

zi,j = 1 for all j, and
∑
i,j

i zi,j ≤ q. (4.7)

The objective is to minimize the reconstruction error, while the first constraints im-
pose that each column of X has a single sparsity level, and the second that the total
number of non-zero entries of X does not exceed q.

We propose a greedy selection algorithm to solve (4.7), see lines 12 to 28 of Algo-
rithm 4.2. As we will prove in Theorem 4.1, this greedy strategy is nearly optimal.
It works as follows. For each column j, the scalar kj indicates its sparsity level at the
current iteration, that is, at every iteration, the jth column of X is kj-sparse. We
initialize the algorithm with the 0-sparse solution (the vector of all zeros) for each
column (line 12), that is, kj = 0 for all j. Note that

∑
j kj corresponds to the current

sparsity level of the solution.
At each iteration, we will decrease the sparsity of a single column of X. To pick

that column in an optimal way, let us define the matrix G, with the same dimensions
as C, as follows: at any iteration, the entry G(i, j) is equal to the potential gain in
reconstruction error if the jth column of X goes from kj-sparse to i-sparse divided
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by the sparsity difference between these two solutions (that is, i− kj). In particular,
at the first iteration (line 15), when X = 0, we have

G(i, j) =
C(0, j)− C(i, j)

i
for all i, j.

Let us denote by (i∗, j∗) the position of the largest entry of G. Given a current
solution, the column that will decrease the error ‖B −AX‖2F the most by decreasing
its sparsity is the one corresponding to the column of G with the largest entry, that
is, the j∗th column. Finding this entry is cheap in practice, as we update a sorted
list of the maximum entry of each column of G. We denote the quantity δ as the
difference in sparsity of the selected column before and after it has been updated,
that is, δ = i∗ − kj∗ . After the value of kj∗ has been updated to i∗, we update the
entries of the j∗th column of G accordingly (line 23). Note that G(i, j∗) = 0 for all
i ≤ i∗.

To avoid generating a too dense solution (recall
∑
j kj must be smaller than q), the

procedure on lines 24 to 26 sets to zero the entries of G whose selection would lead to
a total sparsity

∑
j kj larger than q. Note that thanks to the condition on line 24, this

procedure is executed only for the last few iterations of Salmon. Indeed, the maximum
increase δ is r, so this procedure would not be useful as long as

∑
j kj ≤ q − r.

When the sum of the sparsity levels equals q, or when all entries of G are zero,
we stop the procedure and we build the final q-sparse solution X by selecting for
each column the solution corresponding to its final sparsity level (line 27). As a side
note, only by changing the stopping condition from a sparsity threshold to an error
threshold, we can adapt this algorithm to tackle `0-minimization under a constraint
on the reconstruction error.

Although the selection algorithm of step 2 is greedy, since we perform an optimal
selection at each iteration, it is able to generate a near-optimal solution to Prob-
lem (4.7), as shown below.

Theorem 4.1 (Near-optimality of the selection step) Given that C is non-in-
creasing by columns, that is, C(i, j) ≤ C(i′, j) for all i′ ≤ i and all j, the proposed
selection step of Salmon (lines 12 to 28 of Algorithm 4.2) computes a near-optimal
solution of (4.7) in the following sense. Denoting

• f(z)=
∑
i,j zi,jC(i, j) the value of the objective function of (4.7) for a solution z,

• z∗ an optimal solution to Problem (4.7), and

• zSal the solution computed by the selection step of Salmon,

we have
f(z∗) ≤ f(zSal) ≤ f(z∗) + max

j
‖C(:, j)‖∞.

Proof 4.1 First, note that our proposed greedy algorithm generates a feasible solu-
tion of (4.7) since we make sure that

∑
j kj remains smaller than q, and hence, by

optimality of z∗, f(z∗) ≤ f(zSal).
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Let us now show that f(zSal) ≤ f(z∗) + maxj ‖C(:, j)‖∞. Our greedy procedure
is similar to a dynamic programming approach. In fact, let us denote the optimal
objective function value of (4.7) as f∗(q) that depends on the parameter q, the global
sparsity level allowed; note that f(z∗) = f∗(q). The greedy algorithm is initialized
with z0,j = 1 for all j, that is, X = 0, which is optimal for q = 0 (it is the only
feasible solution), and hence gives f∗(0) =

∑
j C(0, j). It then progressively decreases

the sparsity to reduce the objective the most at each iteration. At each iteration of
the greedy algorithm, the support of a single column of X is increased in order to
maximize the ratio between the decrease in objective function value and the decrease
of sparsity. Since the columns of X do not interact with each other in the objective
function and since C is non-increasing in each column, the greedy solution cannot
possibly be improved as long as δ ≤ q −∑j kj, that is, as long as this optimal way
of picking a column is allowed by the global sparsity level. In summary, our greedy
algorithm produces intermediate optimal solutions of (4.7) with objective f∗(

∑
j kj+δ)

as long as
∑
j kj + δ ≤ q.

The only moment when the greedy algorithm might fall short of global optimality is
during the last iterations: if at some point the optimal move is to increase the support
of a column in such a way that the total sparsity would exceed q (that is,

∑
j kj+δ > q),

then our greedy algorithm may not be optimal because, to allow that move, we might
need to reduce the support of another column, which the greedy approach does not
allow. Making that move anyway would generate an optimal solution with global
sparsity q′ =

∑
j kj + δ > q which would not be feasible for (4.7). Observe that

• f(zSal) ≤ f∗(q′−δ) since the greedy algorithm keeps improving the (q′−δ)-sparse
solution in its next iterations (although possibly not optimally).

• f∗(q′) ≥ f∗(q′− δ)−maxj ‖C(:, j)‖∞ since the move from q′− δ to q′ using the
greedy strategy is optimal and, in the worst case, will decrease the sparsity level
of a column from r to 0 reducing the error by at most maxj ‖C(:, j)‖∞.

• f∗(q′) ≤ f∗(q) ≤ f∗(q′ − δ) since q′ − δ ≤ q ≤ q′.

Combining these observations, we obtain

f∗(q) = f(z∗) ≥ f∗(q′) ≥ f∗(q′ − δ)−max
j
‖C(:, j)‖∞ ≥ f(zSal)−max

j
‖C(:, j)‖∞,

which gives the result.

Note that, in most practical cases, such as hyperspectral unmixing, we have n� r
and hence maxj ‖C(:, j)‖∞ is negligible compared to f(z∗). In addition, it is rather
unlikely to reach this worst case, as it implies that the greedy algorithm needs to
increase the sparsity level of one column from 0 to r at the last step. In practice,
when δ > 1, it is usually small (equal to 2 or 3). In fact, in our experiments, we
observed that δ is in most cases equal to 1. When δ is equal to 1 in the last r steps,
the greedy algorithm is globally optimal (or, more generally, when δ = q −∑k kj
in the last step). For example, for the datasets used in the numerical experiments
(Section 4.4) and with the three sparse NNLS algorithms to generate the Pareto fronts
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(that is, the matrix C), the greedy selection algorithm generated a guaranteed globally
optimal solution (that is, δ = q −∑k kj in the last step) in 19 out of 22 cases.

In practice, the global optimality of Salmon to solve the sparse MNNLS prob-
lem (4.1) therefore heavily relies on step 1. If step 1 is done with Arborescent, then
the Pareto fronts are computed optimally and Salmon computes a near-optimal solu-
tion to Problem (4.1). Otherwise, it only computes an approximate solution, although
there exist some conditions under which NNOMP or the homotopy algorithm do re-
cover the true Pareto fronts, see Sections 4.2.1 and 4.2.2.

Computational cost of Salmon The cost of step 1 depends on the algorithm used
to generate the Pareto fronts. In all cases, the n biobjective subproblems are solved
independently, so the cost of step 1 grows linearly with n. For one subproblem, that
is, to generate one Pareto front, we have that

• The cost of Arborescent depends on the number of nodes explored in the branch
and bound. In the worst case, it is of the same order as the bruteforce algorithm,
and requires to solve

(
r
k

)
NNLS subproblems, while, in the best case, it is of the

order of r [61]. Empirically, the cost is far from the worst case but grows faster
than linear with r.

• The cost of NNOMP is in O(mr4) operations [83].

• The cost of the homotopy algorithm is of the same order as an active-set algo-
rithm and requires at least O(r4) operations, see Section 4.2.2.

Given C, the selection step consists in building G in O(rn) operations, then iterat-
ing q times (in the worst case) to select a solution. As we maintain updated a sorted
list to avoid recomputing the maximum at each iteration, this is done in O(q log(n))
operations. Since q is in the order of rn in the worst case, the cost of the selection
step is dominated by the cost of the Pareto-front-generating step.

4.3.2 Adapting NNOMP for matrix-wise q-sparse MNNLS
Let us now adapt NNOMP for the matrix-wise q-sparse MNNLS problem. To avoid
the overcost of solving the vectorized problem (4.2) directly with NNOMP, we can
adapt NNOMP to handle the matrix form of Problem (4.1). We detail the adaptation
in Algorithm 4.3; note that it is not an original contribution and seems to be common
knowledge in the sparse approximation community. The solution produced by this
algorithm is strictly equivalent to the one produced by direct solving of (4.2). Our
goal in introducing it is to show how using NNOMP within the two-step algorithm
Salmon is advantageous compared to using NNOMP directly on Problem (4.1).

On line 1, we initialize X as a zero matrix, S as an empty support, and the
residual RS as equal to B. Then, we select greedily entries to add to the support,
while the cardinality of the support is lower than q and the residual greater than zero
(line 2). The greedy selection on line 3 consists in choosing the entry that maximizes
the decrease of the residual error; this entry is added to the support on line 4. Then,
we update X on line 5 (this is an NNLS problem, that we solve with an active-set
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Algorithm 4.3: The greedy algorithm NNOMP adapted for matrix-wise
q-sparse MNNLS.
Input: B ∈ Rm×n, A ∈ Rm×r, q ∈ N
Output: X, approximate solution to Problem (4.1)

1 X ← 0r×n ; S ← ∅ ; RS ← B

2 while |S| < q and max(i,j)(A
>RS)i,j > 0 do

3 (i∗, j∗)← argmax(i,j)/∈S A
>RS

4 S ← S ∪ (i∗, j∗)
5 X ← minX ‖AS −BSXS‖2F
6 RS ← B −AX
7 S ← {(i, j) : X(i, j) > 0}

algorithm), and the residual RS on line 6; note that in practice we only need to update
the j∗-th column of X and RS . On line 7 we perform a support compression, that
is, we restrain the support to the non-zero entries of X. This last step is necessary
because of the nonnegativity constraint, that may put to zero an entry that was
selected at a previous iteration.

Other greedy algorithms could be adapted similarly, but here we focus only on
NNOMP for conciseness. Also, our goal is to study how the original NNOMP com-
pares to NNOMP used within the two-step approach Salmon, rather than comparing
different greedy algorithms with each other. The homotopy algorithm may also be
similarly adaptable, but this is not trivial and out of the scope of this work. Adapting
Arborescent in such a way does not seem possible as it would result in a combinatorial
explosion.

4.4 Experiments
In this section, we study the performance of the proposed algorithm on the unmixing
of 7 datasets: 3 faces datasets and 4 hyperspectral images.

4.4.1 Data
In the faces datasets, each column of B corresponds to a pixel and each row to an
image (that is, B(i, j) is the intensity of pixel j in image i). It is well-known that
NMF will extract facial features as the rows of matrix X [47]. As no groundtruth
is available, we first compute A with SNPA [32], an algorithm for separable NMF,
setting the factorization rank r as in the literature. We then compute X with our
sparsity-enhancing method. Imposing sparsity on X means that we require that only
a few pixels are contained in each facial feature [38]. We consider the 3 widely used
face datasets CBCL3, Frey4, and Kuls5.

3Downloaded from http://poggio-lab.mit.edu/codedatasets
4Downloaded from https://cs.nyu.edu/~roweis/data.html
5Downloaded from http://www.robots.ox.ac.uk/

http://poggio-lab.mit.edu/codedatasets
https://cs.nyu.edu/~roweis/data.html
http://www.robots.ox.ac.uk/
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Similarly a hyperspectral image is an image-by-pixel matrix where each image
corresponds to a different wavelength. The columns of A represent the spectral sig-
nature of the pure materials (also called endmembers) present in the image [13], and
we use the ground truth A from [85]. We compute X, whose columns represent the
abundance of materials in each pixel. It makes sense to impose X to be sparse as
most pixels contain only a few endmembers [54]. We consider the 4 widely used
datasets6 Jasper, Samson, Urban, and Cuprite. The characteristics of these datasets
are summarized in Table 4.1.

Table 4.1: Summary of the datasets, for which B ∈ Rm×n and A ∈ Rm×r.

Dataset Type m n r
CBCL Faces 2429 19× 19 = 361 49
Frey Faces 1965 20× 28 = 560 36
Kuls Faces 20 64× 64 = 4096 5
Jasper Hyperspectral 198 100× 100 = 1000 4
Samson Hyperspectral 156 95× 95 = 9025 3
Urban Hyperspectral 162 307× 307 = 94249 6
Cuprite Hyperspectral 188 250× 191 = 47750 12

4.4.2 Methods
All methods have been implemented in Julia and run on a computer with a processor
Intel Core i5-2520M @2.50GHz. The code and experiment scripts are provided in an
online repository7.

We compare the following methods:

• AS denotes an active-set algorithm that solves exactly the NNLS problem with-
out sparsity constraint. It serves as a baseline to compare with the sparsity-
constrained methods.

• `1-CD denotes a coordinate descent algorithm with an `1 penalty. The penalty
parameter λ is fixed and the same for the whole matrix, as in [43]. It has been
tuned manually to reach the target sparsity. We compute the unbiased solution
by running an active-set NNLS algorithm restrained to the non-zero elements
of the `1-penalized solution.

• Hcw denotes the homotopy algorithm described in Section 4.2.2, that solves
the column-wise k-sparse problem, as defined in (1.8) For each column, we
generate the regularization path, take the best k-sparse solution, and unbias it
as described above.

• H+S corresponds to the two-step algorithm Salmon using the homotopy algo-
rithm in step 1 (solutions are unbiased as above).

6Downloaded from http://lesun.weebly.com/hyperspectral-data-set.html
7https://gitlab.com/nnadisic/giant.jl

http://lesun.weebly.com/hyperspectral-data-set.html
https://gitlab.com/nnadisic/giant.jl
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• OGcw stands for orthogonal greedy and denotes the NNOMP algorithm de-
scribed in Section 4.2.1, that solves the column-wise k-sparse problem.

• OGg denotes the matrix-wise variant of NNOMP described in Section 4.3.2.

• OG+S corresponds to the two-step algorithm Salmon using NNOMP in step 1.
We generate the whole Pareto fronts, hence the column-wise sparsity target for
NNOMP is k = r.

• ARBOcw denotes the branch-and-bound algorithm Arborescent described in
Chapter 3, that solves the column-wise k-sparse problem.

• ARBO+S corresponds to the two-step algorithm Salmon using Arborescent in
step 1. We generate the whole Pareto fronts, hence the column-wise sparsity
target for Arborescent is k = 1.

We choose the parameter k by trial-and-error. Unless stated otherwise, we define
the sparsity parameter of matrix-wise methods as q = k × n, which is equivalent to
an average column-wise k-sparsity constraint.

For every dataset, we run the nine methods, and measure the average column-
sparsity of the given solutions (defined as the number of non-zero entries divided by the
number of columns), the relative reconstruction error ‖B−AX‖F‖B‖F , and the computing
time, for which we measure the median over 10 runs. We set a timeout of 6000 seconds.
Note that, for a given dataset and with the same parameters, a given algorithm
always gives the same output. For the 3 methods based on NNOMP, we normalize
the columns of the matrix A before the computation.

4.4.3 Results and interpretation
The results of the experiments are summarized in Table 4.2. We first note the natural
sparsity of the data: without sparsity constraint, AS already produces very sparse so-
lutions, and column-wise methods produce solutions with an average sparsity below
the sparsity target k, meaning that some columns are naturally sparser than k. We
observe that the column-wise methods give relatively bad results in terms of recon-
struction error, while the variants of Salmon are able to enforce sparsity while limiting
the loss in error. H+S is only slightly slower than Hcw, meaning that the selection
(step 2) takes less time than the homotopy (step 1). On the other hand, OG+S and
ARBO+S are slower than their column-wise counterparts because they need to be
run with a different sparsity target, respectively k = r and k = 1, to compute the
whole Pareto front. The computing times of H+S and OG+S seem proportional,
and differ by a factor between 2 and 3, which is consistent with our discussion about
computational cost in Section 4.3.1. `1-CD is very fast, and produces good solutions
with some datasets (Jasper, Samson), but it is outperformed by Salmon in all cases
and sometimes produces solutions with high error (CBCL, Cuprite).

Comparing OGg and OG+S, we observe that OGg is faster for tall matrices,
while OG+S is faster for short and fat matrices. Also, OG+S is always better in
terms of reconstruction error, meaning that performing the heuristic column-wise
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Table 4.2: Results of the experiments, for the unmixing of facial and hyperspectral
datasets. Time is in seconds, relative error in percent, and sparsity is the average
number of non-zero entries per column. Numbers in bold represent, for a given setting,
the error of ARBO+S and the best error among the other sparse methods. For the
variants of Salmon, a star ∗ indicates that the greedy selection (step 2 of Salmon) is
optimal (which can be checked easily: it requires δ = q−∑k kj at the last iteration).
Jasper is processed once with all algorithms for k = q/n = 2, and once with matrix-
wise algorithms for q/n = 1.8 (which is not possible with column-wise algorithms).

AS `1-CD Hcw H+S OGcw OGg OG+S ARBOcw ARBO+S
CBCL Time 0.2 0.1 0.71 0.81 0.08 0.31 3.7 timeout timeout
r = 49 Error 12.04 17.37 16.19 13.22∗ 13.12 12.35 12.3∗ - -
k = 3 Sparsity 6.64 3 2.69 3 2.37 3 3 - -
Frey Time 0.22 0.08 1.12 1.27 0.18 0.61 3.97 timeout timeout
r = 36 Error 19.35 21.76 23.22 20.75∗ 21.35 19.86 19.8 - -
k = 6 Sparsity 12.29 6 5.52 6 4.64 6 6 - -
Kuls Time 0.17 0.12 0.18 0.17 0.28 1.82 0.5 0.67 1.41
r = 5 Error 19.05 19.61 20.13 19.12∗ 19.46 19.06 19.06∗ 19.42 19.06∗
k = 3 Sparsity 3.45 3 2.86 2.99 2.7 3 3 2.76 3
Jasper Time 0.34 0.22 0.38 0.48 0.39 6.08 1.12 1.21 1.93
r = 4 Error 5.71 5.72 6.99 5.72∗ 7.49 5.76 5.73 6.18 5.71∗
k = 2 Sparsity 2.27 2 1.78 1.99 1.72 2 2 1.78 2
Jasper Time - 0.18 - 0.44 - 5.26 1.15 - 1.7
r = 4 Error - 7.87 - 5.95∗ - 6.06 5.77∗ - 5.74∗
q/n = 1.8 Sparsity - 1.8 - 1.79 - 1.8 1.8 - 1.8
Samson Time 0.22 0.24 0.2 0.26 0.31 3.67 0.57 0.52 0.8
r = 3 Error 3.3 3.3 3.34 3.3∗ 6.76 3.32 3.3∗ 3.4 3.3∗
k = 2 Sparsity 2.2 2 1.85 2 1.6 1.99 1.99 1.83 2
Urban Time 5.08 4.31 4.86 7.79 3.38 958 16.4 33.5 73.1
r = 6 Error 7.67 8.13 8.62 7.83∗ 8.97 8.07 7.76∗ 8.27 7.71∗
k = 2 Sparsity 2.63 2 1.9 2 1.7 2 2 1.83 2
Cuprite Time 5.19 3.32 7.86 10.1 5.06 620 31.5 784 4829
r = 12 Error 1.74 3.17 2.37 2.01 2.32 1.97 1.89∗ 1.93 1.83∗
k = 4 Sparsity 6.61 4 3.92 4 3.53 4 4 3.81 4

and then recombining solutions is more efficient than applying the same heuristic
matrix-wise. As regards Arborescent, we see a clear improvement of reconstruction
error with Salmon, at the cost of a larger computation time. The two-step approach
of Salmon allows Arborescent to be applied for matrix-wise q-sparse MNNLS, which
would be impossible otherwise. Another advantage of the matrix-wise formulation is
the capacity to tune the sparsity parameter more finely; this is illustrated on Jasper
with q/n = 1.8, for which we reach an average sparsity similar to that of column-wise
metods and still get lower errors. For the three variants of Salmon, the stars indicates
that the selection (step 2) is done optimally as discussed in Theorem 4.1; here it is
the case for 19 out of 22 settings.

The abundance maps corresponding to the second material extracted in the hy-
perspectral image Jasper are shown in Fig. 4.4. The abundance maps of the features
extracted in the faces dataset Kuls are shown in Fig. 4.3. The other abundance maps
from our experiments are available in [57]8.

8https://arxiv.org/abs/2011.11066

https://arxiv.org/abs/2011.11066
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The features extracted in Fig. 4.3 correspond to different directions of light. With-
out sparsity constraint, the quality of the images is good, but the features are not well
separated. Column-wise methods and `1-CD fail to retrieve the features and produce
noisier images with pixelated regions. Salmon, using any of the 3 possible methods
for step 1, produces better-separated features, with a better spatial coherence.

In Fig. 4.4, we consider only the second material extracted. It corresponds mainly
to water. However, with most methods, it is mixed with pixels from the road on the
right. Salmon variants separate it better while maintaining the spatial coherence.
Salmon using the homotopy in step 1 produces an almost perfect separation, and
eliminates the non-water pixels while sharpening the edge between water and non-
water pixels. In these images, it is clear that some pixels are composed of only one
endmember (for instance, water) while others are mixed (trees and grass mixed). This
is the kind of setting where Salmon can bring significant improvement.

What algorithm should one use for step 1 of Salmon? When the dimension
r is small or when the computing time is not critical, the best option is to use Ar-
borescent in step 1 as it is the only algorithm to compute the Pareto fronts exactly.
In other cases, using NNOMP in step 1 generally produces better solutions than using
the homotopy algorithm. The homotopy algorithm is the fastest so it is appropriate
when processing very large datasets with a limited time.

4.5 Conclusion
In this chapter, we focused on the multiple nonnegative least squares problem with
a matrix-wise `0 constraint (4.1). We introduced Salmon (Algorithm 4.2), that first
computes for each column a Pareto front (step 1) and then applies a provably near-
optimal selection strategy to build a solution matrix X (step 2). We computed the
Pareto fronts with three existing algorithms: one exact but slow branch-and-bound
algorithm (Arborescent from Chapter 3), and two fast heuristics. We illustrated the
advantages of Salmon for the unmixing of real-world facial and hyperspectral images,
for which it outperformed state-of-the-art methods.



Chapter 4. Matrix-wise `0-constrained NNLS 97

(a) AS (no sparsity constraint)

(b) `1-CD

(c) Hcw

(d) H+S

Figure 4.3: (1/2) Abundance maps (that is, reshaped rows of X) from the unmixing
of the faces dataset Kuls by different algorithms.
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(e) OGcw

(f) OGg

(g) OG+S

(h) ARBOcw

(i) ARBO+S

Figure 4.3: (2/2) Abundance maps (that is, reshaped rows of X) from the unmixing
of the faces dataset Kuls by different algorithms.
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(a) AS (b) `1-CD, q/n = 2 (c) `1-CD, q/n = 1.8

(d) Hcw, k = 2 (e) H+S, q/n = 2 (f) H+S, q/n = 1.8

Figure 4.4: (1/2) Abundance map of the second material (that is, the second row
of X reshaped) from the unmixing of the hyperspectral image Jasper by different
algorithms. This material corresponds to water.
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(g) OGcw, k = 2 (h) OGg, q/n = 2 (i) OG+S, q/n = 2

(j) OGg, q/n = 1.8 (k) OG+S, q/n = 1.8

(l) ARBOcw, k = 2 (m) ARBO+S, q/n = 2 (n) ARBO+S, q/n = 1.8

Figure 4.4: (2/2) Abundance map of the second material (that is, the second row
of X reshaped) from the unmixing of the hyperspectral image Jasper by different
algorithms. This material corresponds to water.



Chapter 5

Sparse Separable NMF

“Le véritable anarchiste marche toujours entre les clous, parce qu’il
a horreur de discuter avec les agents.”

– Georges Brassens

In this chapter, we propose a new variant of nonnegative matrix factorization
(NMF) that combines the assumptions of separability and sparsity. We call this vari-
ant sparse separable NMF (SSNMF), which we prove to be NP-complete, as opposed
to separable NMF which can be solved in polynomial time (see Chapter 2). The main
motivation to consider this new model is to handle underdetermined blind source sep-
aration problems, such as multispectral image unmixing. We introduce an algorithm
to solve SSNMF, based on the successive nonnegative projection algorithm (SNPA,
an effective algorithm for separable NMF) and the algorithm Arborescent presented
in Chapter 3. We prove that, in noiseless settings and under mild assumptions, our
algorithm recovers the true underlying sources. This is illustrated by experiments on
synthetic data sets and the unmixing of a multispectral image.

The content of this chapter is mainly extracted from [59]:

59. Nadisic, N., Vandaele, A., Cohen, J. E. & Gillis, N. Sparse separable nonnegative
matrix factorization in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECMLPKDD) (2020), 335–350.

5.1 Introduction

In this chapter we consider the separable NMF problem as discussed in Section 1.8.
As a reminder, separable NMF consists in the following: given a r-separable matrix
B, find A = B(:,J ) with |J | = r and X ≥ 0 such that B = AX.

The central contribution of this chapter is a novel variant of this model with an
additional constraint of k-sparsity on the columns of X. We study the theoretical
properties of this new model, and we propose a guaranteed algorithm to tackle it.
First, let us describe an existing algorithm for separable NMF, namely the successive

101



102

nonnegative projection algorithm (SNPA). This algorithm is the foundation for our
proposed method.

5.1.1 Successive Nonnegative Projection Algorithm
Various algorithms have been developed to tackle the (near-)separable NMF problem.
In Chapter 2, we studied vertex component analysis (VCA) and the successive projec-
tions algorithm (SPA). Other examples are the fast canonical hull algorithm [45], or
the successive nonnegative projections algorithm (SNPA) [32]. Such algorithms start
with an empty matrix A and a residual matrix R = B, and then alternate between
two steps: a greedy selection of one column of R to be added to A, and an update of
R using B and the columns extracted so far. As SNPA was shown, both theoretically
and empirically, to perform better and to be more robust than its competitors [32], it
is the one we study here in detail. The main difference of SNPA over VCA and SPA is
that, instead of orthogonal projections, it performs at each iteration a projection on
the convex hull of the origin and the column of B extracted so far. Moreover, SNPA
is able to handle the underdetermined case when rank(A) < m which will be key for
our problem setting (see below for more details).

SNPA is presented in Algorithm 5.1. SNPA selects, at each step, the column of

Algorithm 5.1: SNPA [32]
Input: A near-separable matrix B ∈ Rm×n, the number r of columns to be

extracted, and a strongly convex function f with f(0) = 0 (by
default, f(x) = ‖x‖22).

Output: A set of r indices J , and a matrix X ∈ Rr×n+ such that
B ≈ B(:,J )X.

1 Init R← B
2 Init J = {}
3 Init t = 1
4 while R 6= 0 & t ≤ r do
5 p = argmaxj f(R(:, j))

6 J = J ∪ {p}
7 foreach j do
8 X∗(:, j) = argminh∈∆ f(B(:, j)−B(:,J )h)
9 R(:, j) = B(:, j)−B(:,J )X∗(:, j)

10 t = t + 1

B maximizing a function f (which can be any strongly convex function such that
f(0) = 0, and f = ||.||22 is the most common choice). Then, the columns of B are
projected onto the convex hull of the origin and the columns extracted so far, see step
8 where we use the notation

∆ =
{
x
∣∣ x ≥ 0,

∑
i

xi ≤ 1
}
,
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whose dimension is clear from the context. After r steps, given that the noise is suffi-
ciently small and that the columns of A are vertices of conv(A), SNPA is guaranteed
to identify A. An important point is that SNPA requires the columns of X to satisfy
‖X(:, j)‖1 ≤ 1 for all j. This assumption can be made without loss of generality
by properly scaling the columns of the input matrix to have unit `1 norm; see the
discussion in [32].

5.1.2 Model limitations
Unfortunately, some data sets cannot be handled successfully by separable NMF, even
when all data points are linear combinations of a subset of the input matrix. In fact,
in some applications, some columns of the basis matrix A, that is, the atoms, might
not be vertices of conv(A). This may happen when one seeks a matrix A which is
not full column rank. For example, in multispectral unmixing, m is the number of
spectral bands which can be smaller than r, which is the number of materials present
in the image; see Section 5.6.2 for more details. Therefore, it is possible for some
columns of A to be contained in the convex hull of the other columns, that is, to be
additive linear combinations of others columns of A; see Fig. 5.1 for illustrations in
three dimensions (that is, m = 3).

These difficult cases cannot be handled with separable NMF, because it assumes
the data points to be linear combinations of vertices, so an “interior vertex” cannot
be distinguished from another data point. However, if we assume the sparsity of the
mixture matrix X, we may be able to identify these interior vertices. To do so, we
introduce a new model, extending the approach of SNPA using additional sparsity
constraints. More precisely, we consider a constraint of column-wise k-sparsity on the
factor X, meaning that a data point is expressed as the combination of at most k
atoms. For example, in multispectral unmixing, this constraint means that a pixel is
composed of at most k materials. We introduce in Section 5.2 a proper definition of
this new problem, which we coin as sparse separable NMF (SSNMF). As a reminder,
a brief review of sparse NMF is presented in Section 1.7.

5.1.3 Contributions and outline
In this chapter, we study the SSNMF model from a theoretical and a practical point
of view. Our contributions can be summarized as follows:

• In Section 5.2, we introduce the SSNMF model.

• In Section 5.3, we prove that, unlike separable NMF, SSNMF is NP-complete.

• In Section 5.4, we propose an algorithm to tackle SSNMF, based on SNPA and
the exact k-sparse NNLS solver Arborescent from Chapter 3.

• In Section 5.5, we prove that our algorithm is correct under reasonable assump-
tions, in the noiseless case.

• In Section 5.6, experiments on both synthetic and real-world data sets illustrate
the relevance and efficiency of our algorithm.
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Figure 5.1: On the top (a), all vertices are exterior, and SNPA is assured to identify
them all. On the bottom (b), the data points are 2-sparse combinations of 4 points,
one of which (vertex 4) is “interior” hence it cannot be identified with separable NMF.
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5.2 Sparse separable NMF
We explained in the previous section why separable NMF does not allow for the
identification of “interior vertices”, as they are nonnegative linear combinations of
other vertices. However, if we assume a certain column-wise sparsity on the coefficient
matrix X, they may become identifiable. For instance, the vertex A4 of Fig. 5.1b can
be expressed as a combination of the three exterior vertices (A1, A2, and A3), but not
as a combination of any two of these vertices. Moreover, some data points cannot be
explained using only pairs of exterior vertices, while they can be if we also select the
interior vertex A4.

5.2.1 Problem statement and complexity
Definition 5.1 A matrix B is k-sparse r-separable if there exists a subset of r columns
of B, indexed by J , and a nonnegative matrix X ≥ 0 with ‖X(:, j)‖0 ≤ k for all j
such that B = B(:,J )X.

Definition 5.1 corresponds to Definition 1.1 with the additional constraint that X
has k-sparse columns, that is, columns with at most k non-zero entries. A natural
assumption to ensure that we can identify A (that is, find the set J ), is that the
columns of A are not k-sparse combinations of any other columns of A; see Section 5.5
for the details.

Problem 5.1 (SSNMF) Given a k-sparse r-separable matrix B, find
A = B(:,J ) with |J | = r and a column-wise k-sparse matrix X ≥ 0 such that B =
AX.

As opposed to separable NMF, given J , computing X is not straightforward. It
requires to solve the following `0-constrained optimization problem

X∗ = argmin
X≥0

f(B −B(:,J )X) such that ‖X(:, j)‖0 ≤ k for all j. (5.1)

Because of the combinatorial nature of the `0-“norm”, this k-sparse projection is a
difficult subproblem with

(
r
k

)
possible solutions. It is known to be NP-hard, see

Chapter 3. In particular, a brute-force approach could tackle this problem by solving
O(rk) NNLS problems. However, this combinatorial subproblem can be solved ex-
actly and at a reasonable cost by the branch-and-bound algorithm Arborescent (see
Chapter 3), given that r is sufficiently small, which is typically the case in practice.
Even when k is fixed, the following result shows that no provably correct algorithm
exists for solving SSNMF in polynomial time (unless P=NP):

Theorem 5.1 SSNMF is NP-complete for any fixed k ≥ 2.

Proof 5.1 The proof is given in Section 5.3. Note that the case k = 1 is trivial since
each data point is a multiple of a column of A.

However, in Section 5.5, we show that under a reasonable assumption, SSNMF
can be solved in polynomial time when k is fixed.
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5.2.2 Related work
To the best of our knowledge, the only work presenting an approach to tackle SSNMF
is the one by Sun and Xin (2011) [75] — and it does so only partially. It studies
the blind source separation of nonnegative data in the underdetermined case. The
problem tackled is equivalent to NMF in the case m < r. The assumptions used in
this work are similar to ours, that is, separability and sparsity. However, the setup
considered is less general than SSNMF because the sparsity assumption (on each
column of X) is limited to k = m− 1, while the only case considered theoretically is
the case r = m+ 1 with only one interior vertex.

The proposed algorithm first extracts the exterior vertices using the method LP-
BSS from [56], and then identifies the interior vertex using a brute-force geometric
method. More precisely, they select an interior point, and check whether at least two
of the m−1 hyperplanes generated by this vertex with m−2 of the extracted exterior
vertices contain other data points. If it is the case, then they conclude that the selected
point is an interior vertex, otherwise they select another interior point. For example,
when m = 3, this method consists in constructing the segments between the selected
interior point and all the exterior vertices. If two of these segments contain at least
one data point, then the method stops and the selected interior point is chosen as the
interior vertex. Looking at Figure 5.1b, the only interior point for which two segments
joining this point and an exterior vertex contain data points is A4. Note that, to be
guaranteed to work, this method requires at least two hyperplanes containing the
interior vertex and m− 2 exterior vertices to contain data points. This will not be a
requirement in our method.

5.3 Proof of NP-completeness of SSNMF
The main purpose of this section is to provide the proof of Theorem 5.1. More
precisely, we prove the NP-completeness of SSNMF with k = 2, which we denote
2-SSNMF. The decision version of this problem is formally defined as follows.

Problem 5.2 2-SSNMF
Given: a natural number r > 0 and a 2-sparse r-separable matrix B
Question: does there exist a dictionary matrix A = B(:,J ) with |J | ≤ r and a
column-wise 2-sparse matrix X ≥ 0 such that B = AX.

NP-completeness of SSNMF for any 2 ≤ k ≤ r follows directly as it would allow to
solve 2-SSNMF by simply adding artificial columns of A (for example orthogonal to
the ones used in the 2-sparse decomposition). In order to prove the NP-hardness of
2-SSNMF, we first demonstrate a polynomial time reduction from the well known
NP-complete problem SET-COVER [27] to 2-SSNMF.

Problem 5.3 SET-COVER
Given: A finite set S = {1, ..., n}, a collection C = {C1, ..., Cm} of subsets of S and
a positive integer K ≤ m.
Question: Does C ′ ⊆ C exist with |C ′| ≤ K such that every element of S belongs to
at least one member of C ′.
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From an instance (S,C,K) of SET-COVER, let us construct an instance (B, r) of
2-SSNMF in polynomial time.

• The natural number r > 0 is defined as

r =

m∑
i=1

|Ci|+ 2 +K.

• The matrix B is the concatenation of three matrices B1, B2, B3 such that
B = [B1, B2, B3].

– For each subset Ci of Problem 5.3 with i = 1, ...,m, we have the data point
B1(:, i) defined as follows:

B1(:, i) =
(
0 −hi

)T
with hi = i

m+1 . Hence, B1 is a 2-by-m matrix.
– For each element j = 1, ..., n of the ground set S, we have the data point
B2(:, j) defined as follows:

B2(:, j) =
(
bj b2j

)T
with bj = 1

m+1+aj and a = 1
n . These points belong to the curve y = x2.

B2 is a 2-by-n matrix.
– When the jth element of the ground set S is a member of the ith subset
Ci, we add a data point in B3 as follows:

B3(:, l) =
(
hi

bj

h2
i

b2j

)T
with hi and bj as previously defined. Moreover, we add two more columns
to B3 for the data points (0, 0) and (0,−1). Hence, B3 is a 2-by-(2 +∑m
i=1 |Ci|) matrix. Note that the intersection of the curve y = x2 with

the linear equation connecting (0,−hi) and (bj , b
2
j ) is precisely the point

(hi

bj
,
h2
i

b2j
). We show in Lemma 5.2 that all these points never overlap. It

implies that a straight line between the ith point of B1 and a point in B3

is passing through the jth point of B2 if and only if j is in the subset Ci.

Lemma 5.2 All the columns of B3 are different.

Proof 5.2 Suppose it is not the case and that for (i, j) and (i′, j′) with i 6= i′ and
j 6= j′, we have hi

bj
= hi′

bj′
, which means that, after rearrangement

i

i′
=
m+ 1 + aj′

m+ 1 + aj
. (5.2)
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For j, j′ = 1, ..., n, the right-hand side of (5.2) varies as follows:

1− a
(

n− 1

m+ 1 + an

)
≤ m+ 1 + aj

m+ 1 + aj′
≤ 1 + a

(
n− 1

m+ 1 + a

)
,

and when a = 1
n , we have a

(
n−1

m+1+an

)
< a

(
n−1

m+1+a

)
< 1

m+1 , which means that the
variation of the right-hand side around 1 is as follows

1− 1

m+ 1
<

m+ 1 + aj

m+ 1 + aj′
< 1 +

1

m+ 1
.

For i, i′ = 1, ...,m+ 1, the closest value to 1 of i
i′ is

m
m+1 , that is 1− 1

m+1 . Therefore,
the choice of a = 1

n prevents the right-hand side of (5.2) to be equal to its left-hand
side. It results that all the values hi

bj
are different for i = 1, ...,m+ 1 and j = 1, ..., n.

Lemma 5.3 All the columns of B are situated inside the convex hull of the columns
of B3.

Proof 5.3 Except for (0,−1), the columns of B3 are located on the moment curve
y = x2. It results that these points are the vertices of a convex polygon, known under
the name of cyclic polytope. The intersection of the y-axis and the line connecting
any two points of the set {(x, y)|y = x2, x ≥ 1} is located strictly below the point
(0,−1). Following the definitions of hi and bj, we have hi

bj
≥ 1 for any i = 1, ...,m

and j = 1, ..., n, which means that even with the addition of (0,−1), the points of B3

still form a convex polygon. It is then easy to check that the points of B1 and B2 are
inside the convex hull of B3.

Lemma 5.4 The 2-SSNMF instance is a yes-instance if and only if the SET-COVER
instance is a yes-instance.

Proof 5.4 The if part. Suppose we have an optimal cover C ′ ⊆ C of the SET-
COVER instance with |C ′| ≤ K. From this solution, we build a solution to the
2-SSNMF instance as follows:

• For the dictionary matrix A, we concatenate B3 and the columns of B1 corre-
sponding to the subsets in C ′. By this way, the number of columns of A is less
or equal than r =

∑m
i=1 |Ci|+ 2 +K.

• With B3 being in the dictionary, it is easy to construct the columns of X corre-
sponding to [B1, B3] in B: it is trivial for B3 and, for B1, the two nonnegative
entries of a column of X are the two coefficients of the convex combination of
(0, 0), (0,−1). Moreover, since A also contains the K columns of B1 corre-
sponding to the cover C ′, every column coming from B2 in B can be expressed
as the convex combination of exactly two columns of A (see the reduction above).
By this way, we have X ≥ 0, a column-wise 2-sparse matrix, such that B = AX.
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The only if part. Suppose that we have a solution (A,X) of the 2-SSNMF instance
such that B = AX, A having at most r columns and X ≥ 0 being a column-wise 2-
sparse matrix. From this factorization, we show how to extract a cover C ′ made of at
most K subsets. All the columns of B3 are necessarily in A since they are the vertices
of a convex polygon (see Lemma 5.3). Since, by construction, no convex combination
of two points in B3 can reach the n points in B2, we must have A = [B3, A

′]Π with
the columns of A′ coming either from B1 or from B2. The number of columns of A′
is therefore r − (

∑m
i=1 |Ci|+ 2) = K. It remains to show how to construct a solution

to the SET-COVER instance from A′. For every point in B2, it is possible to find a
point in B1 and a point B3 such that the three points are lined up (it is always possible
to find such points since we suppose that every element of the ground set belongs to at
least one subset in the SET-COVER instance). It means that we can replace all the
columns coming from B2 in A′ by columns of B1 without increasing the size of A′. In
order to maintain the equality B = AX, it is easy to update the matrix X accordingly
while keeping it column-wise 2-sparse. Finally, with the K columns of A′ coming
from B1, we have identified a cover C ′ composed of K subsets for the SET-COVER
instance.

Proof 5.5 Proof of Theorem 5.1. 2-SSNMF is in NP since we can check in polyno-
mial time that a given pair (A,X) is a solution of a 2-SSNMF instance. With the
reduction from the SET-COVER problem presented above and Lemma 5.4, we can
conclude that 2-SSNMF is NP-hard.

Illustration of the reduction. From the SET-COVER instance: n = 5, m = 4,
K = 2, C1 = {2, 4}, C2 = {1, 2, 3}, C3 = {3, 4} and C4 = {4, 5}, the reduction pre-
sented above leads to the following 2-SSNMF instance: r = 13 and B = [B1, B2, B3]
with

B1 =

(
0 0 0 0
−h1 −h2 −h3 −h4

)
, B2 =

(
b1 b2 b3 b4 b5
b21 b22 b23 b24 b25

)
,

and B3 =

(
h1

b2
h1

b4
h2

b1
h2

b2
h2

b3
h3

b3
h3

b4
h4

b4
h4

b5
0 0

h2
1

b22

h2
1

b24

h2
2

b21

h2
2

b22

h2
2

b23

h2
3

b23

h2
3

b24

h2
4

b24

h2
4

b25
0 −1

)
,

where hi = i
5 for i = 1, ...4 and bj = (5 + j

5 )−1 for j = 1, ...5 (see Figure 5.2).
A solution to the SET-COVER instance is C ′ = {C2, C4} and the corresponding
2-SSNMF solution is

A =

(
h1

b2
h1

b4
h2

b1
h2

b2
h2

b3
h3

b3
h3

b4
h4

b4
h4

b5
0 0 0 0

h2
1

b22

h2
1

b24

h2
2

b21

h2
2

b22

h2
2

b23

h2
3

b23

h2
3

b24

h2
4

b24

h2
4

b25
0 −1 −h2 −h4

)
, and
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X = 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 β2,1 0 0 0 0
0 0 0 0 0 β2,2 0 0 0
0 0 0 0 0 0 β2,3 0 0
0 0 0 0 0 0 0 0 0 I11
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 β4,4 0
0 0 0 0 0 0 0 0 β4,5

1−α1 1−α2 1−α3 1−α4 0 0 0 0 0
α1 α2 α3 α4 0 0 0 0 0
0 0 0 0 1−β2,1 1−β2,2 1−β2,3 0 0 0...0
0 0 0 0 0 0 0 1−β4,4 1−β4,5 0...0


,

for which we have B = AX when αi = hi, βi,j =
b2j
hi
.

5.4 Proposed algorithm: Brassens
In the following, we assume that the input matrix B is k-sparse r-separable. Our
algorithm, called Brassens1, is presented formally in Algorithm 5.2.

Algorithm 5.2: Brassens
Input: A k-sparse-near-separable matrix B ∈ Rm×n, and the desired

sparsity level k.
Output: A set of r indices J , and a matrix X ∈ Rr×n+ , such that

‖X(:, j)‖0 ≤ k for all j and B = B̃(:,J )X.

1 J = SNPA(B,∞)
2 J ′ = kSSNPA(B,∞,J )
3 foreach j ∈ J ′ do
4 if min

||h||0≤k,h≥0
f(B(:, j)−B(:,J ′ \ j)h) > 0 then

5 J = J ∪ {j}

6 X = arborescent(B,B(:,J ), k)

On line 1 we apply the original SNPA to select the exterior vertices; it is compu-
tationally cheap and ensures that these vertices are properly identified. The symbol
∞ means that SNPA stops only when the residual error is zero. For the noisy case,
we replace the condition R 6= 0 by R > δ, where δ is a user-provided noise-tolerance
threshold.

Then, we adapt SNPA to impose a k-sparsity constraint on X: the projection step
(line 8 of Algorithm 5.1) is replaced by a k-sparse projection step that imposes the
columns of X to be k-sparse by solving (5.1). We call kSSNPA this modified version
of SNPA. Note that, if k = r, kSSNPA reduces to SNPA.

On line 2 we apply kSSNPA to select candidate interior vertices. We provide it
with the set J of exterior vertices so that they do not need to be identified again.

1It stands for Brassens Relies on Assumptions of Separability and Sparsity for Elegant NMF
Solving.



Chapter 5. Sparse Separable NMF 111

1 2 3 4 5
0−1

1

4

9

16

25

0
0.3

−1

1

y = x2

Figure 5.2: Example of a 2-SSNMF instance constructed from the following SET-
COVER instance: n = 5, m = 4, C1 = {2, 4}, C2 = {1, 2, 3}, C3 = {3, 4} and
C4 = {4, 5}. The second picture is a zoom of the first picture on the [0, 0.3]× [−1, 1]
box. Red circles correspond to the points of B3, blue diamonds to the points of B1

and green squares to the points of B2. The red dashed lines are the edges of the
convex hull of the points in B3.
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kSSNPA extracts columns of B as long as the norm of the residual ‖B −B(:,J ′)X‖F
is larger than zero. At this point, all vertices have been identified: the exterior
vertices have been identified by SNPA, while the interior vertices have been identified
by kSSNPA because we will assume that they are not k-sparse combinations of any
other data points; see Section 5.5 for the details. Hence, the error will be equal to
zero if and only if all vertices have been identified. However, some selected interior
points may not be interior vertices, because the selection step of kSSNPA chooses the
point that is furthest away from the k-sparse hull of the selected points, that is, the
union of the convex hulls of the subsets of k already selected points. For example,
in Fig. 5.1b, if A1, A2, and A3 are selected, the k-sparse hull is composed of the 3
segments [A1, A2], [A2, A3], and [A3, A1]. In this case, although only point A4 is an
interior vertex, point B1 is selected before point A4, because it is located further away
from the k-sparse hull.

On lines 3 to 5, we apply a postprocessing to the selected points by checking
whether they are k-sparse combinations of other selected points; this is a k-sparse
NNLS problem solved with Arborescent (from Chapter 3). If they are, then they
cannot be vertices and they are discarded, such as point B1 in Figure 5.1b which
belongs to the segment [A1, A4].

Note that this “postprocessing” could be applied directly to the whole data set
by selecting data points as the columns of A if they are not k-sparse combinations
of other data points. However, this is not reasonable in practice, as it is equivalent
to solving n times a k-sparse NNLS subproblem in n − 1 variables. The kSSNPA
step can thus be interpreted as a safe screening technique, similarly as done in [24]
for example, in order to reduce the number of candidate atoms from all the columns
of B to a subset J ′ of columns. In practice, we have observed that kSSNPA is very
effective at identifying good candidates points; see Section 5.6.1.

5.5 Analysis of Brassens

In this section, we first discuss the assumptions that guarantee Brassens to recover
A given the k-sparse r-separable matrix B, and then discuss the computational com-
plexity of Brassens.

5.5.1 Correctness

In this section, we show that, given a k-sparse r-separable matrix B, the algorithm
Brassens provably solves SSNMF, that is, it is able to recover the correct set of indices
J such that A = B(:,J ), under a reasonable assumption.

Clearly, a necessary assumption for Brassens to be able to solve SSNMF is that
no column of A is a k-sparse nonnegative linear combinations of other columns of A,
otherwise kSSNPA might set that column of A to zero, hence might not be able to
extract it.

Assumption 5.1 No column of A is a nonnegative linear combination of k other
columns of A.
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A6A4 A5

Figure 5.3: There are three interior vertices. One
of them (A5) is a combination of the others two.

A4

B1B2

Figure 5.4: There are two interior vertices. One of
them (A4) is a 2-sparse combination of data points
(B1 and B2).

Interestingly, unlike the standard separable case (that is, k = r), and although
it is necessary in our approach with Brassens, Assumption 5.1 is not necessary in
general to be able to uniquely recover A. Take for example the situation of Fig. 5.3,
with three aligned points in the interior of a triangle, so that r = 6, m = 3 and k = 2.
The middle point of these three aligned points is a 2-sparse combination of the other
two, by construction. If there are data points on each segment joining these three
interior points and the exterior vertices, the only solution to SSNMF with r = 6 is
the one selecting these three aligned points. However, Assumption 5.1 is a reasonable
assumption for SSNMF.

Unfortunately, Assumption 5.1 is not sufficient for Brassens to provably recover
A. In fact, we need the following stronger assumption.

Assumption 5.2 No column of A is a nonnegative linear combination of k other
columns of B.

This assumption guarantees that a situation such as the one shown on Figure 5.4
where one of the columns of A is a 2-sparse combination of two data points is not
possible. In fact, in that case, if Brassens picks these two data points before the



114

interior vertex A4 in between them, it will not be able to identify A4 as it is set to
zero within the projection step of kSSNPA.

Interestingly, in the standard separable case, that is, k = r, the two assumptions
above coincide; this is the condition under which SNPA is guaranteed to work. Al-
though Assumption 5.2 may appear much stronger than Assumption 5.1, they are
actually generically equivalent given that the entries of the columns of X are gen-
erated randomly (that is, non-zero entries are picked at random and follow some
continuous distribution). For instance, for m = 3 and k = 2, it means that no vertex
is on a segment joining two data points. If the data points are generated randomly
on the segments generated by any two columns of A, the probability for the segment
defined by two such data points to contain a column of A is zero. In fact, segments
define a set of measure zero in the unit simplex.

We can now provide a recovery result for Brassens.

Theorem 5.2 Let B = AX with A = B(:,J ) be a k-sparse r-separable matrix so
that |J | = r; see Definition 5.1. We have that

• If A satisfies Assumption 5.2, then the factor A with r columns in SSNMF is
unique (up to permutation and scaling) and Brassens recovers it.

• If A satisfies Assumption 5.1, the entries of X are generated at random (more
precisely, the position of the non-zero entries are picked at random, while their
values follows a continuous ditribution) and k < rank(B), then, with probability
one, the factor A with r columns in SSNMF is unique (up to permutation and
scaling) and Brassens recovers it.

Proof 5.6 Uniqueness of A in SSNMF under Assumption 5.2 is straightforward:
since the columns of A are not k-sparse combinations of other columns of B, they have
to be selected in the index set J . Otherwise, since columns of A are among the columns
of B, it would not possible to reconstruct B exactly using k-sparse combinations of
B(:,J ). Then, since all other columns are k-sparse combinations of the r columns of
A (by assumption), no other columns needs to be added to J which satisfies |J | = r.

Let us show that, under Assumption 5.2, Brassens recovers the correct set of in-
dices J . kSSNPA can only stop when all columns of A have been identified. In fact,
kSSNPA stops when the reconstruction error is zero, while, under Assumption 5.2,
this is possible only when all columns of A are selected (for the same reason as above).
Then, the postprocessing will be able to identify, among all selected columns, the
columns of A, because they will be the only ones that are not k-sparse combinations
of other selected columns.

The second part of the proof follows from standard probabilistic results: since
k < rank(B), the combination of k data points generates a subspace of dimension
smaller than that of col(B). Hence, generating data points at random is equivalent to
generating such subspaces at random. Since these subspaces form a space of measure
zero in col(B), the probability for these subspaces to contain a column of A is zero,
which implies that Assumption 5.2 is satisfied with probability one.
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5.5.2 Computational cost
Let us derive an upper bound on the computational cost of Brassens. First, recall that
solving an NNLS problem up to any precision can be done in polynomial time. For
simplicity and because we focus on the non-polynomial part of Brassens, we denote
Ō(1) the complexity of solving an NNLS problem. In the worst case, kSSNPA will
extract all columns of B. In each of the n iterations of kSSNPA, the problem (5.1)
needs to be solved. When |J | = O(n), this requires to solve n times (one for each
column of B) a k-sparse least squares problem in |J | = O(n) variables. The latter
requires in the worst case O(nk) operations by trying all possible index sets; see the
discussion after (5.1). In total, kSSNPA will therefore run in the worst case in time
Ō(nk+2).

Therefore, when k is fixed (meaning that k is considered as a fixed constant) and
under Assumption 5.2, Brassens can solve SSNMF in polynomial time. Note that this
is not in contradiction with our NP-completeness results when k is fixed (Theorem 5.1)
because our NP-completeness proof does not rely on Assumption 5.2.

In summary, to make SSNMF hard, we need either k to be part of the input, or
the columns of A to be themselves k-sparse combinations of other columns of A.

5.6 Experiments
The code and data are available online2. All experiments have been performed on a
personal computer with an i5 processor, with a clock frequency of 2.30GHz. All algo-
rithms are single-threaded. All are implemented in Matlab, except the sparse NNLS
solver Arborescent, which is implemented in C++ with a Matlab MEX interface.

As far as we know, no algorithm other than Brassens can tackle SSNMF with more
than one interior point (see Section 5.2.2) hence comparisons with existing works are
unfortunately limited. For example, separable NMF algorithms can only identify the
exterior vertices; see Section 5.1. However, we will compare Brassens to SNPA on a
real multispectral image in Section 5.6.2, to show the advantages of the SSNMF model
over separable NMF. In Section 5.6.1, we illustrate the correctness and efficiency of
Brassens on synthetic data sets.

5.6.1 Synthetic data sets
In this section, we illustrate the behaviour of Brassens in different experimental setups.
The generation of a synthetic data set is done as follows: for a given number of
dimensions m, number of vertices r, number of data points n, and data sparsity k,
we generate matrices A ∈ Rm×r+ such that the last r − m columns of A are linear
combinations of the first m columns, and X ∈ Rr×n+ such that X = [Ir, X

′] and
‖X(:, j)‖0 ≤ k for all j. We use the uniform distribution in the interval [0,1] to
generate random numbers (columns of A and columns of X), and then normalize the
columns of A and X to have unit `1 norm. We then compute B = AX. This way, the
matrix B is k-sparse r-separable, with r vertices, of which r−m are interior vertices

2https://gitlab.com/nnadisic/ssnmf

https://gitlab.com/nnadisic/ssnmf
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(in fact, the first m columns of A are linearly independent with probability one as
they are generated randomly). We then run Brassens on B, with the parameter
k, and no noise-tolerance. For a given setup, we perform 30 rounds of generation
and solving, and we measure the median of the running time and the median of the
number of candidates extracted by kSSNPA. This number of candidates corresponds
to |J ′| in Algorithm 5.2, that is, the number of interior points selected by kSSNPA
as potential interior vertices. Note that a larger number of candidates only results
in an increased computation time, and does not change the output of the algorithm
which is guaranteed to extract all vertices (Theorem 5.2).

Fig. 5.5 shows the behaviour of Brassens when n varies, with fixed m = 3, k = 2,
and r = 5. To the best of our knowledge, this case is not handled by any other algo-
rithm in the literature. Both the number of candidates and the run time grow slower
than linear. The irregularities in the plot are due to the high variance between runs.
Indeed, if vertices are generated in a way that some segments between vertices are
very close to each other, Brassens typically selects more candidates before identifying
all columns of A.
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Figure 5.5: Results for Brassens on synthetic data sets for different values of n, with
fixed m = 3, k = 2, and r = 5 with 3 exterior and 2 interior vertices. The values
showed are the medians over 30 experiments.

In Table 5.1 we compare the performance of Brassens for several sets of param-
eters. The number of candidates grows relatively slowly as the dimensions (m,n) of
the problem increase, showing the efficiency of the screening performed by kSSNPA.
However, the run time grows rather fast when the dimensions (m,n) grow. This is
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because, not only the number of NNLS subproblems to solve increase, but also their
size. In all cases, as guaranteed by Theorem 5.2, Brassens was able to correctly

Table 5.1: Results for Brassens on synthetic data sets (median over 30 experiments).

m n r k Number of candidates Run time in seconds
3 25 5 2 5.5 0.26
4 30 6 3 8.5 3.30
5 35 7 4 9.5 38.71
6 40 8 5 13 395.88

identify the columns of A. Again, as far as we know, no existing algorithms in the
literature can perform this task.

To summarize, our synthetic experiments show the efficiency of the screening done
by kSSNPA, and the capacity of Brassens to handle medium-scale data sets.

5.6.2 Blind multispectral unmixing
A multispectral image is an image composed of various wavelength ranges, called
spectral bands, where every pixel is described by its spectral signature. This signature is
a vector representing the amount of energy measured for this pixel in every considered
spectral band. As opposed to hyperspectral images discussed in Section 1.6 and
in previous chapters, multispectral images usually have a small number of bands
(between 3 and 15). Similarly as in hyperspectral unmixing, multispectral unmixing
consists in identifying the different materials present in that image, and here we also
rely on the linear mixing model.

Let us apply Brassens to the unmixing of the well-known Urban satellite image [86],
composed of 309× 309 pixels. The original cleaned image has 162 bands, but we only
keep 3 bands, namely the bands 2, 80, and 133 – these were obtained by selecting
different bands with SPA applied on BT – to obtain a data set of size 3×94 249. The
question is: can we still recover materials by using only 3 bands? (The reason for
this choice is that this data set is well known and the ground truth is available, which
is not the case of most multispectral images with only 3 bands.) We first normalize
all columns of B so that they sum to one. Then, we run Brassens with a sparsity
constraint k = 2 (this means that we assume that a pixel can be composed of at
most 2 materials, which is reasonable for this relatively high resolution image) and a
noise-tolerance threshold of 4%; this means that we stop SNPA and kSSNPA when
‖B − B(:,J )X‖F ≤ 0.04‖B‖F . Brassens extracts 5 columns of the input matrix.
For comparison, we run SNPA with r = 5. Note that this setup corresponds to
underdetermined blind unmixing, because m = 3 < r = 5. It would not be possible
to tackle this problem using standard NMF algorithms (that would return a trivial
solution such as B = I3B). It can be solved with SNPA, but SNPA cannot identify
interior vertices.

SNPA extracts the 5 vertices in 3.8 seconds. Brassens extracts 5 vertices, including
one interior vertex, in 33 seconds. The resulting abundance maps are showed in
Fig. 5.6. They correspond to the reshaped rows of X, hence they show which pixel
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contains which extracted material (they are more easily interpretable than the spectral
signatures contained in the columns of A). The materials they contain are given in
Table 5.2, using the ground truth from [85]. We see that Brassens produces a better
solution, as the materials present in the image are better separated: the first three
abundance maps of Brassens are sparser and correspond to well-defined materials.
The last two abundances maps of SNPA and of Brassens are similar but extracted
in a different order. The running time of Brassens is reasonable, although ten times
higher than SNPA.

Figure 5.6: Abundances maps of materials (that is, reshaped rows of X) extracted
by SNPA (top) and by Brassens (bottom) in the Urban image with only 3 spectral
bands.

Table 5.2: Interpretation of the unmixing results from Figure 5.6.

Image Materials extracted by SNPA Materials extracted by Brassens
1 Grass + trees + roof tops Grass + trees
2 Roof tops 1 Roof tops 1
3 Dirt + road + roof tops Road
4 Dirt + grass Roof tops 1 and 2 + road
5 Roof tops 1 + dirt + road Dirt + grass

5.7 Conclusion
In this chapter, we introduced SSNMF, a new variant of the NMF model combin-
ing the assumptions of separability and sparsity. We proved this variant to be NP-
complete, as opposed to separable NMF. We presented Brassens, an algorithm able
to solve exactly SSNMF. It is based on SNPA and on Arborescent, the exact sparse
NNLS solver presented in Chapter 3. We showed its efficiency for various setups and
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in the successful unmixing of a multispectral image. The present work provides a
new way to perform underdetermined blind source separation, under mild hypothesis,
and a new way to regularize NMF. It makes NMF identifiable even when atoms of
A are nonnegative linear combinations of other atoms (as long as these combinations
have sufficiently many non-zero coefficients). Further work includes the theoretical
analysis of the proposed model and algorithm in the presence of noise.
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Chapter 6

Conclusion

“It is a capital mistake to theorize before one has data. Insensibly
one begins to twist facts to suit theories, instead of theories to suit
facts.”

– Sherlock Holmes, A Scandal in Bohemia, Arthur Conan Doyle

In this chapter, we summarize the contributions presented in this thesis and we
draw some perspectives for future research. We invite the reader to go back to Fig. 1.3
on page 32 for a graphical overview of this thesis. Our contributions are centered
around the NMF problem,

min
A,X
‖B −AX‖2F such that A ≥ 0 and X ≥ 0.

• In Chapter 1, we discussed the motivation for the contributions of this thesis
and gave some technical background about the models considered.

• In Chapter 2, we studied smoothed separable NMF, a variant of the separa-
ble NMF model to estimate A. It is based on the observation that, when the
separability assumption holds, then for each vertex A(:, j) there are more than
one data point B(:, l) close to this vertex. Based on the algorithm ALLS that
leverages this observation, we proposed the two algorithms smoothed VCA and
smoothed SPA. We showed empirically that they outperform both their non-
smoothed counterparts (VCA and SPA) and ALLS by being more tolerant to
noise and outliers in both synthetic experiments and the unmixing of hyper-
spectral images.

• In Chapter 3, we proposed a branch-and-bound algorithm called Arborescent
to solve exactly the k-sparse NNLS problem (1.3). It can notably be used to
compute X with a column-wise k-sparsity constraint (‖X(:, j)‖0 ≤ k for all j),
given A. We showed empirically that Arborescent works in very noisy and ill-
conditioned settings, where other approaches completely fail to recover the true
solution. It is able to enforce sparsity while limiting the loss in reconstruction
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error. When the dimension r is small, which is generally the case in hyperspec-
tral unmixing, Arborescent performs exact solving in a reasonable computing
time. We also proposed its extension to solve the biobjective k-sparse NNLS
problem (1.4).

• In Chapter 4, we proposed an MNNLS model with a matrix-wise `0-constraint.
Given A, it sums up to estimating X such that ‖X‖0 ≤ q for some parameter
q. The motivation for this model is to enforce sparsity in a finer way than the
column-wise constraint. We proposed Salmon, a two-step algorithm to solve it.
Salmon consists in (i) dividing the sparse MNNLS problem into n one-column
biobjective subproblems and compute a Pareto front for each subproblem, and
(ii) select one solution per column (hence per Pareto front) to build a sparsity-
constrained matrix. Step (i) can be done with Arborescent to compute exactly
the Pareto front, or with a greedy algorithm or the homotopy algorithm for
an approximate but faster solving. Step (ii) is done with a dedicated selection
algorithm that we proved near-optimal despite its greedy nature. With exper-
iments on real-world faces datasets and hyperspectral images, we showed that
Salmon produces better solutions and that the matrix-wise `0-constraint is more
appropriate and effective that the column-wise constraint in these settings.

• In Chapter 5, we proposed sparse separable NMF, a new NMF variant to es-
timate A that combines the assumptions of separability and column-wise k-
sparsity of X. This model handles the underdetermined setting where r > m.
It is also the first algorithm to handle the “interior vertex case” where one ver-
tex is a linear combination of other vertices. We proved this new model to
be NP-complete, as opposed to separable NMF that is solvable in polynomial
time. We proposed an algorithm called Brassens to solve it, and proved that
Brassens is guaranteed to recover the vertices in the noiseless case and under
mild assumptions. We showed both theoretically and empirically on real-world
multispectral images that our proposed method handles well underdetermined
problems even with interior vertices.

Perspectives

We believe that several perspectives are opened by the contributions of this thesis.
Smoothed separable NMF can pave the way for a whole new class of separable

NMF algorithms. The assumption of this new model generally holds in real-world
datasets where the separability assumption holds, and many applications could benefit
from new algorithms that are more robust to noise and outliers. We also believe this
new assumption can be easily taken into account in existing algorithms for separable
NMF.

The exact methods for `0-constrained optimization Arborescent and Salmon could
inspire new approaches in other sparse optimization problems, for example simulta-
neous sparse approximation [74, 79] where the columns of X are constrained to be
sparse and to share the same support. This could be useful, for example, in the case of
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a fixed over-complete dictionary A, to select only a subset of columns of A to explain
the data. In addition, these combinatorial algorithms could inspire novel methods for
enforcing other discrete constraints in least square problems or matrix factorization.
This is not common in the current state of the art, and it could be useful in many
applications. For instance, constraining a factor to take values within a discrete set
(for instance, the integers between 1 and 5) would be relevant in applications such
as recommender systems [53, 76] and may be solvable with a branch-and-bound-like
method to prune the search space. Binary constraints [84] also lead to combinatorial
problems and may be tackled in a similar way.

Focusing back on `0-constraints, we could benefit from recent advances such as
the work by Ben Mhenni et al. [8]. They developed branch-and-bound algorithms for
sparse least squares problems concomitantly with our development of Arborescent,
and their approach is more scalable in some settings. Adapting these algorithms to
the nonnegative setting would be of great interest and they could handle the cases
where Arborescent shows limitations, for example, when r is very large and k is small.
We may also be able to extend them to tackle biobjective sparse problems.

Finally, we applied our novel models and methods only for feature extraction in
images and for the unmixing of hyperspectral images. Sparsity and nonnegativity are
known to be realistic assumptions in many other applications such as topic modeling,
chemometrics, or audio source separation. Experimenting with our algorithms on
these new types of data could shed a different light on the properties of these datasets,
determine better the strengths and limitations of our approaches, and motivate further
contributions.

“We can only see a short distance ahead, but we can see plenty
there that needs to be done.”

– Alan Turing
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