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What I will talk about

• High-level overview on NMF
• Not much math, many images
• Intuitions and key ideas

A bit superficial, but I will stick around after the talk for deeper
discussions
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With a little big help from my friends

Nicolas Gillis Arnaud Vandaele
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The motivation behind Nonnegative Matrix Factorization

• Given a set of n data points xj, for j in 1, 2, . . . , n
• We want to understand the underlying structure of the data

Data points xj
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The motivation behind Nonnegative Matrix Factorization

• Given a set of n data points xj, for j in 1, 2, . . . , n
• We want to understand the underlying structure of the data
• By finding a set of r basis vectors wp such that for all j

xj ≈
r∑

p=1
wphjp for some nonneg. weights hjp

This is a form of linear dimensionality reduction.

Basis vectors wp

Data points xj
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Nonnegative Matrix Factorization (NMF)

The NMF model

X = WH + N ∈ Rm×n

where X, W and H are entry-wise nonnegative, N is noise

Problem:

• Given X and a rank r ∈ N, r ≪ m, n
• Estimate W ∈ Rm×r

+ and H ∈ Rr×n
+

Geometrically:

• Columns of W ⇒ basis vectors defining a cone
• Columns of X ⇒ noisy data points contained in that cone
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NMF = finding a cone
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Why nonnegativity?

In other words, why don’t you just apply PCA and call it a day?

• Nonnegativity produces more interpretable solutions
• Natural constraint in many applications
• Favors the sparsity of the factors
• Curiosity: the NMF model is related to lots of interesting problems

in math and machine learning
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The pioneer paper on NMF + Application 1

“Learning the parts of objects by non-negative matrix factorization”,
Lee & Seung, 1999.
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The pioneer paper on NMF + Application 1
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Actually, NMF has been around for a long time

• Paper called “Positive matrix factorization” by Paatero & Tapper,
1994.

• Same model and algorithms exist under different names since the
1960’s in the analytical chemistry community

• Also since the late 1980’s in the geoscience and remote sensing
community
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Application 2: hyperspectral unmixing

X(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑

p
W(:, p)︸ ︷︷ ︸

spectral signature of
p-th material

H(p, j)︸ ︷︷ ︸
abundance of p-th

material in the j-th pixel

Images from J. Bioucas Dias and N. Gillis.
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Linear mixing model
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Application 3: topic modeling and document classification

• Basis elements allow to recover the different topics;
• Weights allow to assign each text to its corresponding topics.
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Application 3: topic modeling and document classification

Five of the topics extracted by NMF on tdt2_top30 (1998 USA news):
Lewinsky Israeli-Palestinian Stock Winter olympics Sports
scandal conflict Market in Nagano
lewinsky israel percent olympic game
mrs israeli stock games denver

jones* netanyahu market olympics team
lawyers palestinian stocks nagano super
clinton peace points gold bowl
president palestinians investors medal packers
sexual arafat prices team jordan

jordan** bank index japan play
relationship minister companies winter green

told talks quarter won bulls
*Paula Jones sued Bill Clinton for an earlier sexual harassment affair.

**Vernon Jordan, a friend and political adviser to Bill Clinton, helped Monica
Lewinsky after she left the White House.

Toolbox: This example can be run with https://gitlab.com/ngillis/nmfbook/ 15/30
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Other applications
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When are you gonna talk about optimization?

• In real-world applications, the model is slightly wrong and
the data is noisy

• May be impossible to find W and H such that X = WH
• Therefore, we look for the best approximation

Approximate NMF

min
W≥0,H≥0

∥X − WH∥

where ∥.∥ is some error measure serving as objective function.

• Different assumptions lead to different objectives
• We can also add regularizers or constraints
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Some objective functions

• The most standard one is squared Frobenius norm, corresponds to
assumption of Gaussian noise, work well in hyperspectral unmixing

min ∥X − WH∥2F

• ℓ1-norm ⇒ Laplace noise, more robust to outliers
• β-divergence ⇒ Poisson noise
• Itakura–Saito distance, used for audio
• …
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Frobenius NMF

min
W≥0,H≥0

∥X − WH∥2F

• Non-convex
• NP-hard
• Ill-posed,

non-unique solution ⇔
identifiability issue

• Lots of local minima

In pratice: alternate optimization
1. Initialize W and H, then loop

1.1 Fix W and optimize
H ≈ argminH≥0 ∥X − WH∥2F

1.2 Fix H and optimize
W ≈ argminW≥0 ∥X − WH∥2F

Subproblems are convex!
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Some regularizations and constraints

Enrich the model with regularizers and constraints to:

• Leverage a-priori knowledge about the data at hand
• Improve solutions in a specific application
• Make the problem better-posed, have some guarantees about

identifiability

Examples:

• Sparse NMF
• min ∥X − WH∥2F+λ∥H∥1
• min ∥X − WH∥2F s.t. ∥H(:; j)∥0 ≤ k for all j

• Separable NMF (details next slide)
• Minimum-volume NMF
• …
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One variant: Separable NMF

Separability assumption
There exists an index set K with |K| = r such that

X = X(:,K)H + N

Interpretation: for each vertex, there exist at least one data point equal
to this vertex =⇒ pure-pixel assumption in hyperspectral unmixing

X

≈

W

×

H
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Separability in hyperspectral unmixing: pure-pixel

X(:, j)︸ ︷︷ ︸
spectral signature of

j-th pixel

≈
∑

p
W(:, p)︸ ︷︷ ︸

spectral signature of
p-th material

H(p, j)︸ ︷︷ ︸
abundance of p-th

material in the j-th pixel

22/30



Separable NMF

• NMF is NP-hard in general
• Under the separability assumption, it is solvable in polynomial time
• Identifiability of the solution
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4 years of my life in 5 slides

• Focus on ℓ0-sparsity constraints =⇒ combinatorial problems
• Exact algorithms
• Combine sparse optimization and NMF
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Column-wise k-sparse NMF: exact algorithm

min ∥X − WH∥2F s.t. ∥H(:; j)∥0 ≤ k for all j

Subproblem is k-sparse NNLS:

min
x≥0

∥Ax − b∥22 s.t. ∥x∥0 ≤ k

x = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ r = 5

x = [0 x2 x3 x4 x5]

x = [0 0 x3 x4 x5]

x = [0 0 0 x4 x5] x = [0 0 x3 0 x5] x = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

x = [0 x2 0 x4 x5] x = [0 x2 x3 0 x5] ... k′ ≤ 3

x = [x1 0 x3 x4 x5] ... k′ ≤ 4
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Bi-objective extension

min
x≥0

{
∥Ax − b∥2

2
∥x∥0

0
∥x∥00

∥A
x−

b∥
2 2

1 2 3 4 r = 5

x = 0∥b∥22

x ∈ argminx≥0 ∥Ax − b∥22
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Matrix-wise ℓ0 constraints

min
H≥0

∥X − WH∥22 s.t. ∥H∥0 ≤ q

• Can be seen as a global sparsity budget
• If q = k × n, this enforces an average k-sparsity on the columns of H

=X W
H
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Sparse Separable NMF

X = X(:,K)H such that for all j, ∥H(:, j)∥0 ≤ k
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Smoothed Separable NMF
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Thanks !
Contact: nicolas.nadisic@umons.ac.be

Website: http://nicolasnadisic.xyz

My supervisor’s book:

mailto:nicolas.nadisic@umons.ac.be
http://nicolasnadisic.xyz

