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Nonnegative Least Squares

• Nonnegative Least Squares problems of the form

min ||Ax − b||22 such that x ≥ 0 (1)

are a variant of Least Squares problems where the solution is

constrained to be entry-wise nonnegative.

• They are useful when data points are modeled as additive

combinations of atoms.
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Example of application: Hyperspectral Unmixing

Figure 1: Given M and U, find V.
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Sparsity

• Sparsity = Most entries are zero.

• Sparsity improves interpretability.

• Nonnegativity naturally produces sparse solutions. . .

. . . but without guarantee.

• Controlling the level of sparsity is useful in many applications.

• Ex: we want a pixel to be expressed as a combination of at most 3

materials.
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Sparsity

• How to quantify sparsity?

• A natural measure: `0-“norm”

||x ||0 = |{i : xi 6= 0}| (number of nonzero entries of x).

Problem

||x ||0 is non-convex and non-smooth ⇒ hard to enforce as a constraint.

Possible relaxation

||x ||1 =
n∑

i=1

|xi | is convex ⇒ easy to optimize.

It is often used as a sparsity measure.
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LASSO

• There are many efficient sparsity-inducing techniques.

• The most famous is LASSO regularization, where the `1-norm is

used as a convex surrogate of `0 and applied as a penalty to the

objective function.

The NNLS problem becomes:

min ||Ax − b||22+λ||x ||1 such that x ≥ 0, for a given λ > 0. (2)

Drawbacks

• λ is hard to tune to reach a sparsity target.

• There is no guarantee on the solution sparsity.

• As the optimized problem changes, a bias is introduced.
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Hard `0 constraint

It’s better to impose hard `0 constraints, in order to:

• Be able to define an explicit sparsity target.

• Have guarantees on the solution’s sparsity.

Problem statement

Given A ∈ Rm×n, b ∈ Rm and k ∈ N, find

x∗ = argmin‖Ax − b‖22 such that ‖x‖0 ≤ k and x ≥ 0. (3)

• This is the Sparse Nonnegative Least Squares problem, also known

as Nonnegative Sparse Coding.

• We wish to solve it exactly.
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A combinatorial problem

• `0-“norm” is discrete ⇒ the problem is combinatorial in nature.

• It is equivalent to “Find the optimal support of x with cardinality k”

(support = set of nonzero entries).

• There are
(
n
k

)
possible supports.

Example

For n = 4 and k = 2, possible k-sparse solutions are:

{00x3x4} {0x20x4} {0x2x30} {x100x4} {x10x30} {x1x200}.

• Exact resolution is possible with a bruteforce approach (solve a

NNLS subproblem for every possible support).

• It doesn’t scale well:
(
n
k

)
subproblems to solve.
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An efficient algorithm for exact resolution

• To avoid exploring all of the possible supports, we can prune the

search space using a branch-and-bound strategy.

• Our solution: the arborescent algorithm

arborescent Realizes a Branch-and-bound Optimization to Require

Explicit Sparsity Constraints to be Enforced in NNLS Tasks
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arborescent

X = [x1 x2 x3 x4 x5 ]root node, unconstrainedk = r = 5
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arborescent

• One node = an over-support + the parent solution.

• NNLS subproblems are solved with an active-set algo, initialized

with the parent solution.

• At root node, entries of X are sorted (ascending order of entries of

the solution to the unconstrained problem). Then the exploration is

depth-first and “left-first”.

• Avoid symmetry.
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Input: A ∈ Rm×n
+ , b ∈ Rm

+, k ∈ {1, 2, . . . , n}
Output: xbest = arg min

x≥0
||Ax − b||22 s.t. ||x ||0 ≤ k

1 Init x0 ← NNLS(A, b); Sort the entries in x0;

2 Init K0 ← {1, ..., n}; Init best error ← +∞; Init P ← {(K0, x0)}
3 while P 6= ∅ do

4 (K, xparent) = P.select()

5 P ← P \ {(K, xparent)}
6 (error , x)← NNLS(A(:,K), b, xparent(K))

7 if error > best error then

8 prune (do nothing)

9 else

10 if size(K) > k then

11 foreach i ∈ K do

12 P ← P ∪ {(K \ {i}, x) }
13 else

14 if error < best error then

15 best error ← error

16 xbest ← x

17 return xbest



Competing algorithms

• LASSO: a `1-penalized coordinate descent.

• Greedy algorithms: Nonnegative versions of OMP and OLS

[Nguyen et al., 2019].

• Bruteforce ([Cohen and Gillis, 2019] for Sparse NMF)

14/25



Experiments: Comparison on synthetic datasets

Data:

• We generate a matrix A ∈ Rm×n
+ and a random k-sparse vector

xtrue ∈ Rn
+, compute b = Axtrue , and run the algorithms with A, b

and k as input.

• Fixed n = 20 and k = 10.

• Three values of m:1000, 100, 20.

• A is generated well-conditioned or ill-conditioned.

• 5% noise is added to b, or not.

• Total of 12 test settings, we do 100 runs for each one.

Measures:

• Average relative error ||Ax−b||2||b||2 .

• Average computing time (in seconds).

• Success = number of time the support of xtrue is recovered.
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Experiments: Comparison on synthetic datasets i

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b

Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 0 6.83 100 5.01 3.13 97 3.50 8.61 16 6.28 4.12 9

CVX 0 796.90 100 4.96 634.62 100 0.08 609.45 96 4.98 571.72 98

NNOMP 0 5.60 100 4.96 3.73 100 2.79 4.14 3 5.83 3.63 3

NNOLS 0 4.67 100 4.96 3.36 100 1.95 4.21 23 5.50 3.13 22

arbo. 0 43.09 100 4.96 1369.30 100 0 29.80 100 4.96 1223.20 100

Results for m = 1000, n = 20, k = 10.
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Experiments: Comparison on synthetic datasets ii

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b

Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 0.27 1.93 93 4.97 2.48 84 3.65 2.22 11 6.02 1.97 7

CVX 0 536.95 100 4.73 502.00 100 0.02 508.60 98 4.84 489.68 58

NNOMP 0.48 2.83 89 4.98 2.79 83 3.09 2.83 3 5.50 2.80 2

NNOLS 0.20 2.52 95 4.88 2.62 91 2.15 2.55 14 5.11 2.55 18

arbo. 0 46.32 100 4.73 1145.10 100 0 29.39 100 4.71 1304.40 63

Results for m = 100, n = 20, k = 10.
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Experiments: Comparison on synthetic datasets iii

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b

Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 2.88 1.39 23 4.29 1.31 15 3.41 1.44 5 4.66 1.53 1

CVX 0.00 532.23 100 3.26 495.62 23 0.95 548.41 39 3.07 509.10 7

NNOMP 3.02 2.85 12 3.85 2.74 6 2.07 2.96 2 3.57 2.88 0

NNOLS 2.57 2.59 18 3.73 2.54 10 1.48 3.02 12 3.26 3.08 1

arbo. 0 46.84 100 3.09 1472.20 30 0 34.20 100 2.83 1283.70 11

Results for m = 20, n = 20, k = 10.
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Experiment: scalability of arborescent

• For different values of n,

and k = n/2, we

generate 100 random

datasets with 5% noise

and run arborescent.

• We measure the average

number of nodes

explored by

arborescent, divided

by the number of nodes

explored by bruteforce(
n
k

)
.
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Experiment: arborescent vs bruteforce

• For m and n fixed, and k taking all values between 1 and n − 1, we

generate 100 random datasets, run arborescent and a bruteforce

method, and measure the average running times.
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Experiment: Hyperspectral Unmixing on Cuprite Image

NNLS LASSO arbo.

Time (s.) 15.81 22.35 1053

Rel. Error (%) 1.74 4.21 1.78

Sparsity 6.61 4.34 4.77

• Given an hyperspectral image

of 250× 191 = 47750 pixels in

m = 188 denoised spectral

bands, and a dictionary of

n = 12 materials, identify the

materials in the pixels.

• Algorithms compared:

coordinate descent without

sparsity constraint (NNLS),

with sparsity constraints

(LASSO), and arborescent.
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Conclusion

• We proposed arborescent, a branch-and-bound algorithm to solve

exactly the k-Sparse Nonnegative Least Squares problem.

• It works in very general settings, when traditional approaches fail.

• (At the cost of higher computation time)

• Performs well on a real-life hyperspectral unmixing application.

• Generally much faster than bruteforce methods.

• (Except when k is very small)
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WIP: Pareto front

• As a side-effect, when computing the k-sparse solution,

arborescent also computes all of the k ′-sparse solutions,

∀k ′ ∈ {k , k + 1, ...n}.
• It gives a kind of Pareto front (minimizing the error and k).

• It allows for “automatic k detection”.
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