Exact Sparse Nonnegative Least Squares

A combinatorial approach

<u>Nicolas Nadisic</u>, Arnaud Vandaele, Nicolas Gillis, Jeremy Cohen May 4-8th, 2020 — ICASSP 2020 (virtual conference)

University of Mons, Belgium

Paper and slides: http://nicolasnadisic.xyz/publication/exact-sparse-nnls/ • Nonnegative Least Squares problems of the form

$$\min ||Ax - b||_2^2 \text{ such that } x \ge 0 \tag{1}$$

are a variant of Least Squares problems where the solution is constrained to be entry-wise nonnegative.

• They are useful when data points are modeled as additive combinations of atoms.

Example of application: Hyperspectral Unmixing

Figure 1: Given M and U, find V.

- Sparsity = Most entries are zero.
- Sparsity improves interpretability.

- Sparsity = Most entries are zero.
- Sparsity improves interpretability.
- Nonnegativity naturally produces sparse solutions... ...but without guarantee.
- Controlling the level of sparsity is useful in many applications.
- Ex: we want a pixel to be expressed as a combination of at most 3 materials.

Sparsity

- How to quantify sparsity?
- A natural measure: ℓ_0 "norm" $||\mathbf{x}||_0 = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).

Sparsity

- How to quantify sparsity?
- A natural measure: ℓ_0 "norm"

 $||\mathbf{x}||_{\mathbf{0}} = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).

Problem

 $||x||_0$ is non-convex and non-smooth \Rightarrow hard to enforce as a constraint.

Sparsity

- How to quantify sparsity?
- A natural measure: ℓ_0 -"norm"

 $||\mathbf{x}||_{\mathbf{0}} = |\{i : x_i \neq 0\}|$ (number of nonzero entries of x).

Problem

 $||\mathbf{x}||_0$ is non-convex and non-smooth \Rightarrow hard to enforce as a constraint.

Possible relaxation

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$
 is convex \Rightarrow easy to optimize.
It is often used as a sparsity measure.

LASSO

- There are many efficient sparsity-inducing techniques.
- The most famous is LASSO regularization, where the ℓ_1 -norm is used as a convex surrogate of ℓ_0 and applied as a penalty to the objective function.

LASSO

- There are many efficient sparsity-inducing techniques.
- The most famous is LASSO regularization, where the ℓ_1 -norm is used as a convex surrogate of ℓ_0 and applied as a penalty to the objective function.

The NNLS problem becomes:

 $\min ||Ax - b||_2^2 + \lambda ||x||_1 \text{ such that } x \ge 0, \text{ for a given } \lambda > 0.$ (2)

LASSO

- There are many efficient sparsity-inducing techniques.
- The most famous is LASSO regularization, where the ℓ_1 -norm is used as a convex surrogate of ℓ_0 and applied as a penalty to the objective function.

The NNLS problem becomes:

 $\min ||Ax - b||_2^2 + \lambda ||x||_1 \text{ such that } x \ge 0, \text{ for a given } \lambda > 0.$ (2)

Drawbacks

- λ is hard to tune to reach a sparsity target.
- There is no guarantee on the solution sparsity.
- As the optimized problem changes, a bias is introduced.

It's better to impose hard ℓ_0 constraints, in order to:

- Be able to define an explicit sparsity target.
- Have guarantees on the solution's sparsity.

It's better to impose hard ℓ_0 constraints, in order to:

- Be able to define an explicit sparsity target.
- Have guarantees on the solution's sparsity.

Problem statement

Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $k \in \mathbb{N}$, find

 $x^* = \arg\min \|Ax - b\|_2^2$ such that $\|x\|_0 \le k$ and $x \ge 0$. (3)

- This is the Sparse Nonnegative Least Squares problem, also known as Nonnegative Sparse Coding.
- We wish to solve it exactly.

- $\ell_0\text{-}\,\text{``norm''}$ is discrete \Rightarrow the problem is combinatorial in nature.
- It is equivalent to "Find the optimal support of x with cardinality k" (support = set of nonzero entries).
- There are $\binom{n}{k}$ possible supports.

Example

For n = 4 and k = 2, possible k-sparse solutions are: { $00x_3x_4$ } { $0x_20x_4$ } { $0x_2x_30$ } { x_100x_4 } { x_10x_30 } { x_1x_200 }.

- $\ell_0\text{-}\,\text{``norm''}$ is discrete \Rightarrow the problem is combinatorial in nature.
- It is equivalent to "Find the optimal support of x with cardinality k" (support = set of nonzero entries).
- There are $\binom{n}{k}$ possible supports.

Example

For n = 4 and k = 2, possible k-sparse solutions are: { $00x_3x_4$ } { $0x_20x_4$ } { $0x_2x_30$ } { x_100x_4 } { x_10x_30 } { x_1x_200 }.

- Exact resolution is possible with a bruteforce approach (solve a NNLS subproblem for every possible support).
- It doesn't scale well: $\binom{n}{k}$ subproblems to solve.

- To avoid exploring all of the possible supports, we can prune the search space using a branch-and-bound strategy.
- Our solution: the arborescent algorithm arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks

root node, unconstrained

$$\left[\mathbf{X} = \begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} \right] k = r = 5$$

root node, unconstrained

$$\mathbf{X} = \begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} k = r = 5$$

- One node = an over-support + the parent solution.
- NNLS subproblems are solved with an active-set algo, initialized with the parent solution.
- At root node, entries of X are sorted (ascending order of entries of the solution to the unconstrained problem). Then the exploration is depth-first and "left-first".
- Avoid symmetry.

```
Input: A \in \mathbb{R}^{m \times n}_+, b \in \mathbb{R}^m_+, k \in \{1, 2, ..., n\}
    Output: x_{best} = \arg\min_{x>0} ||Ax - b||_2^2 \text{ s.t. } ||x||_0 \le k
 1 Init x_0 \leftarrow \text{NNLS}(A, b); Sort the entries in x_0;
 2 Init \mathcal{K}_0 \leftarrow \{1, ..., n\}; Init best_error \leftarrow +\infty; Init P \leftarrow \{(\mathcal{K}_0, x_0)\}
 3 while P \neq \emptyset do
          (\mathcal{K}, x_{parent}) = P.select()
 4
    P \leftarrow P \setminus \{(\mathcal{K}, x_{parent})\}
 5
      (error, x) \leftarrow \text{NNLS}(A(:, \mathcal{K}), b, x_{\text{parent}}(\mathcal{K}))
 6
          if error > best_error then
 7
                prune (do nothing)
 8
 9
          else
                if size(\mathcal{K}) > k then
10
                      foreach i \in \mathcal{K} do
11
                      | P \leftarrow P \cup \{(\mathcal{K} \setminus \{i\}, x)\}
12
                else
13
                      if error < best error then
14
                            best\_error \leftarrow error
15
                           x_{best} \leftarrow x
16
```

- LASSO: a $\ell_1\text{-penalized coordinate descent.}$
- Greedy algorithms: Nonnegative versions of OMP and OLS [Nguyen et al., 2019].
- Bruteforce ([Cohen and Gillis, 2019] for Sparse NMF)

Data:

- We generate a matrix A ∈ ℝ^{m×n}₊ and a random k-sparse vector x_{true} ∈ ℝⁿ₊, compute b = Ax_{true}, and run the algorithms with A, b and k as input.
- Fixed n = 20 and k = 10.
- Three values of *m*:1000, 100, 20.
- A is generated well-conditioned or ill-conditioned.
- 5% noise is added to b, or not.
- Total of 12 test settings, we do 100 runs for each one.

Measures:

- Average relative error $\frac{||A_X b||_2}{||b||_2}$.
- Average computing time (in seconds).
- Success = number of time the support of x_{true} is recovered.

	Well-cond A, Noiseless b			Well-cond A, Noisy b			III-cond A, Noiseless b			Ill-cond A, Noisy b		
	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.
L1-CD	0	6.83	100	5.01	3.13	97	3.50	8.61	16	6.28	4.12	9
CVX	0	796.90	100	4.96	634.62	100	0.08	609.45	96	4.98	571.72	98
NNOMP	0	5.60	100	4.96	3.73	100	2.79	4.14	3	5.83	3.63	3
NNOLS	0	4.67	100	4.96	3.36	100	1.95	4.21	23	5.50	3.13	22
arbo.	0	43.09	100	4.96	1369.30	100	0	29.80	100	4.96	1223.20	100

Results for m = 1000, n = 20, k = 10.

	Well-cond A, Noiseless b			Well-cond A, Noisy b			III-cond A, Noiseless b			III-cond A, Noisy b		
	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.
L1-CD	0.27	1.93	93	4.97	2.48	84	3.65	2.22	11	6.02	1.97	7
CVX	0	536.95	100	4.73	502.00	100	0.02	508.60	98	4.84	489.68	58
NNOMP	0.48	2.83	89	4.98	2.79	83	3.09	2.83	3	5.50	2.80	2
NNOLS	0.20	2.52	95	4.88	2.62	91	2.15	2.55	14	5.11	2.55	18
arbo.	0	46.32	100	4.73	1145.10	100	0	29.39	100	4.71	1304.40	63

Results for m = 100, n = 20, k = 10.

	Well-cond A, Noiseless b			Well-cond A, Noisy b			III-cond A, Noiseless b			III-cond A, Noisy b		
	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.
L1-CD	2.88	1.39	23	4.29	1.31	15	3.41	1.44	5	4.66	1.53	1
CVX	0.00	532.23	100	3.26	495.62	23	0.95	548.41	39	3.07	509.10	7
NNOMP	3.02	2.85	12	3.85	2.74	6	2.07	2.96	2	3.57	2.88	0
NNOLS	2.57	2.59	18	3.73	2.54	10	1.48	3.02	12	3.26	3.08	1
arbo.	0	46.84	100	3.09	1472.20	30	0	34.20	100	2.83	1283.70	11

Results for m = 20, n = 20, k = 10.

Experiment: scalability of arborescent

- For different values of n, and k = n/2, we generate 100 random datasets with 5% noise and run arborescent.
- We measure the average number of nodes explored by arborescent, divided by the number of nodes explored by bruteforce (ⁿ_k).

Experiment: arborescent vs bruteforce

 For m and n fixed, and k taking all values between 1 and n − 1, we generate 100 random datasets, run arborescent and a bruteforce method, and measure the average running times.

Experiment: Hyperspectral Unmixing on Cuprite Image

- Given an hyperspectral image of 250 × 191 = 47750 pixels in m = 188 denoised spectral bands, and a dictionary of n = 12 materials, identify the materials in the pixels.
- Algorithms compared: coordinate descent without sparsity constraint (NNLS), with sparsity constraints (LASSO), and arborescent.

- We proposed arborescent, a branch-and-bound algorithm to solve exactly the k-Sparse Nonnegative Least Squares problem.
- It works in very general settings, when traditional approaches fail.
 - (At the cost of higher computation time)
- Performs well on a real-life hyperspectral unmixing application.
- Generally much faster than bruteforce methods.
 - (Except when k is very small)

WIP: Pareto front

- As a side-effect, when computing the k-sparse solution, arborescent also computes all of the k'-sparse solutions, ∀k' ∈ {k, k + 1,...n}.
- It gives a kind of Pareto front (minimizing the error and k).
- It allows for "automatic k detection".

Cohen, J. E. and Gillis, N. (2019).

Nonnegative Low-rank Sparse Component Analysis.

In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8226–8230.

Nguyen, T. T., Idier, J., Soussen, C., and Djermoune, E.-H. (2019). Non-Negative Orthogonal Greedy Algorithms. *IEEE Transactions on Signal Processing*, pages 1–16. Contact: nicolas.nadisic@umons.ac.be

Paper and slides:

http://nicolasnadisic.xyz/publication/exact-sparse-nnls/

Code and exp.:

https://gitlab.com/nnadisic/sparse-nmf

