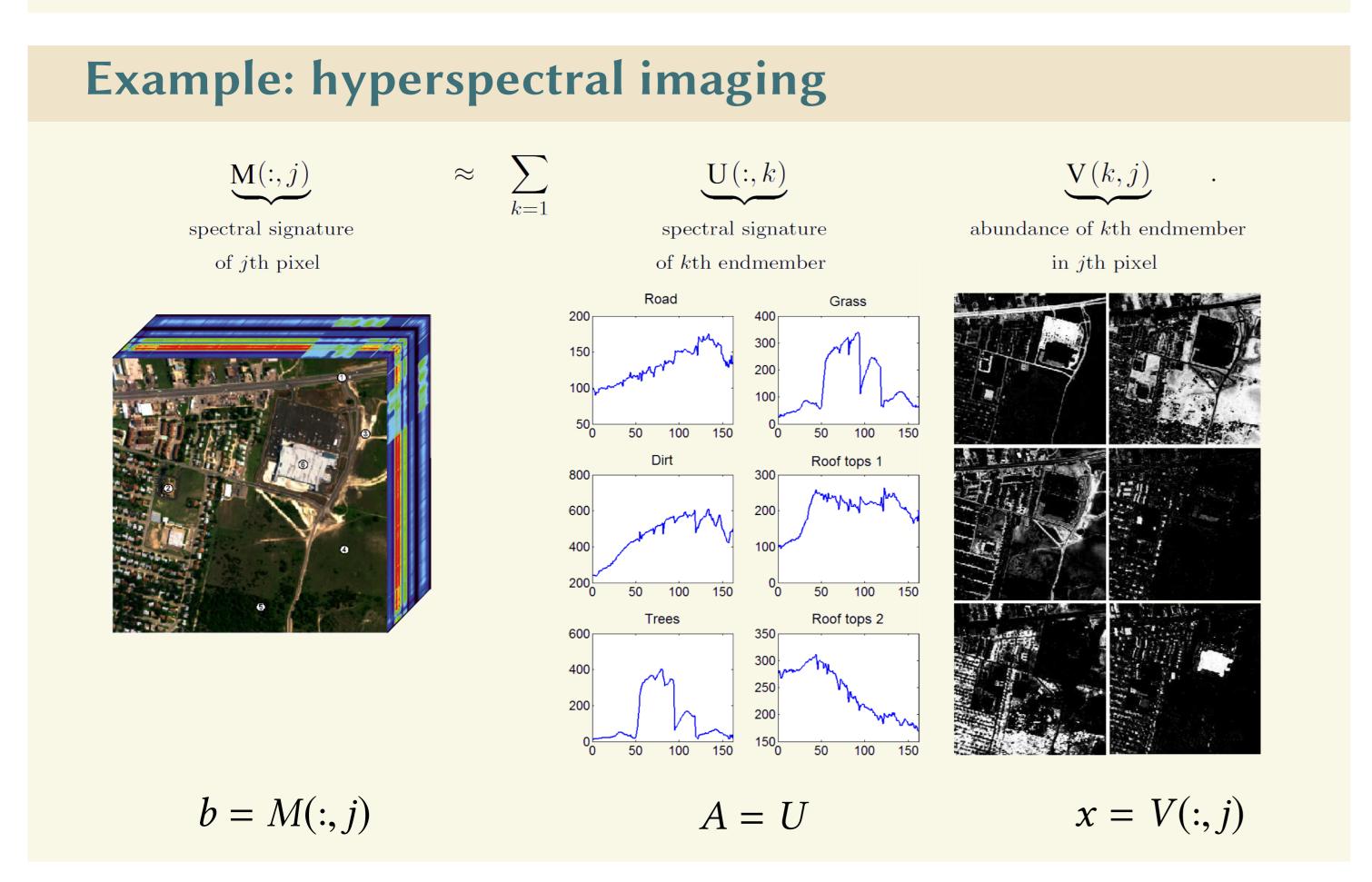
Exact Sparse Nonnegative Least Squares A branch-and-bound algorithm for faster and robust exact solving.

Nonnegative Least Squares

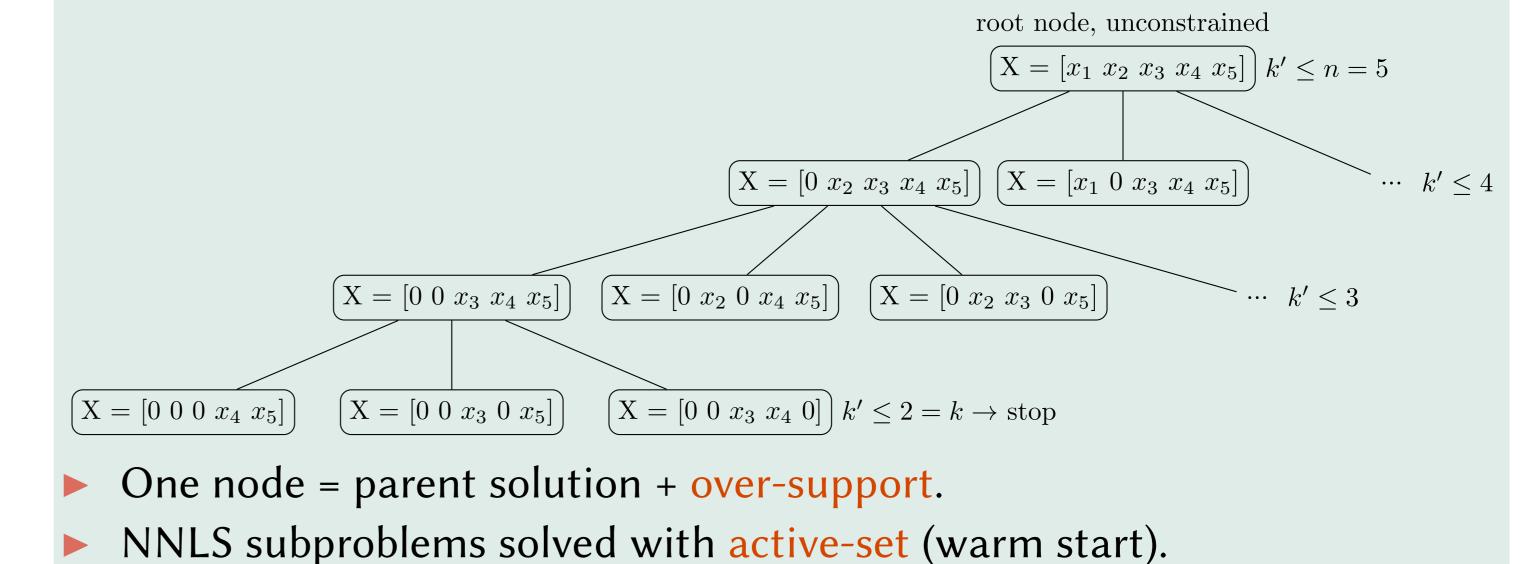
Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find $x^* \in \mathbb{R}^n$,

- $x^* = \arg \min_{x} ||Ax b||_2^2$ such that $x \ge 0$. (1)
- Solution constrained to be entry-wise nonnegative.
- Useful when data point = additive linear combinations of atoms.



Our branch-and-bound algorithm: arborescent

arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks. Instead of enumerating all solutions, prune the search space. Ex, n = 5 k = 2.



At root node, sort the entries by ascending order of the entries of the unconstrained solution.

Sparsity

What?

- Sparse solution = has only a few nonzero elements.
- Data point b = combination of a few atoms A(:, i).
 Why?
- Improves interpretability.
- Used as a constraint, can represent an a priori knowledge and help reducing noise.

How?

- Nonnegativity naturally produces sparsity, but with no guarantee.
- Need to constrain the objective function.
- A natural measure is the ℓ_0 -"norm".

Then, explore depth-first and "left-first".

Experiments on synthetic datasets

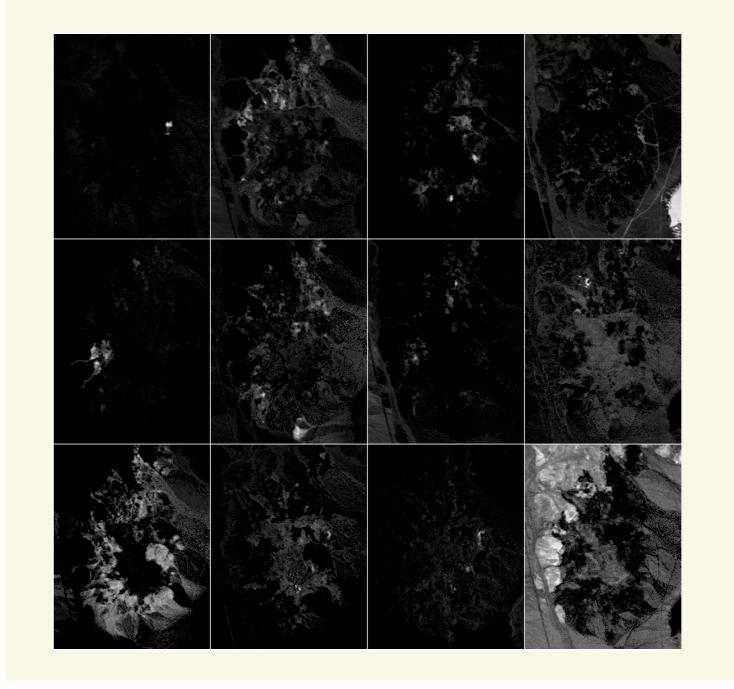
	Well-cond A, No-noise b			Well-cond A, Noisy b			Ill-cond A, No-noise b			Ill-cond A, Noisy b		
	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.	Rel. Err.	Time	Succ.
L1-CD	3.41	87.99	40	4.80	85	48	4.83	84.73	4	5.63	79.79	4
CVX	0.23	510.69	95	3.01	509.73	90	2.86	481.34	14	4.11	496.19	12
NNOMP	0.48	2.64	89	3.12	2.74	83	3.09	2.62	3	4.02	2.88	2
NNOLS	0.20	2.36	95	2.93	2.51	92	2.15	2.45	14	3.62	2.59	17
arbo.	0	46.85	100	2.73	1211.1	100	0	30.19	100	2.84	1374.1	80

Results for 100 runs, random data, m = 100, n = 20, k = 10.

Time in ms. Success = recovery of original support of x.

arborescent finds the optimal solution for most cases, even the dificult ones, at the cost of a higher computation time.

Hyperspectral unmixing



Cuprite image: 250 × 191 = 47750 pixels, m = 188 spectral bands, n = 12 materials, we look for materials concentrations in pixels.

► $||x||_0 = Card\{i : x_i \neq 0\}$ = number of nonzero entries of x.

Problem statement

Sparse Nonnegative Least Squares or **Nonnegative Sparse Coding**. Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $k \in \mathbb{N}$, find $x^* \in \mathbb{R}^n$,

 $x^* = \arg\min_{x} ||Ax - b||_2^2$ such that $x \ge 0$ and $||x||_0 \le k$.

To solve (2) is equivalent to find the best *k*-support of *x*.

Issues

- ℓ_0 -"norm" is nonconvex and nonsmooth, thus hard to enforce.
- The problem is NP-hard and combinatorial.
- $\binom{n}{k}$ possible supports.

Example: for n = 4 and k = 2, possible k-sparse supports are [0 0 $x_3 x_4$] [0 $x_2 0 x_4$] [0 $x_2 x_3 0$] [$x_1 0 0 x_4$] [$x_1 0 x_3 0$] [$x_1 x_2 0 0$].

Existing methods

Relaxation to LASSO

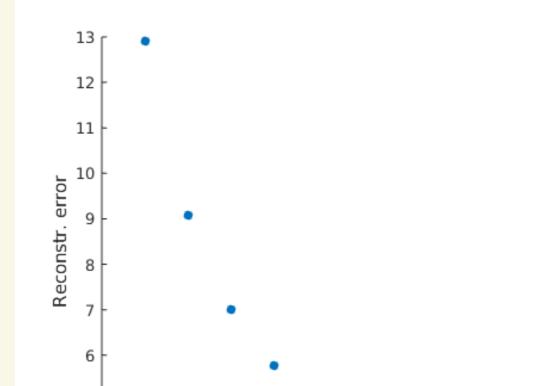
 ℓ_1 -norm penalty $\rightarrow \min_x ||Ax - b||_2^2 + \lambda ||x||_1$. \bigcirc convex, can be solved with coordinate/gradient descent. Constraint: a pixel is composed of at most k = 5 materials.

	CD	L1-CD	arbo.
Time (s.)	15.81	22.35	1053
Rel. Error (%)	1.74	4.21	1.78
Sparsity	6.61	4.34	4.77

WIP: Pareto front

(2)

As a side-effect, arbo. finds the optimal solution for every sparsity level $k' \in \{k, k + 1, ..., n\}$. \rightarrow Pareto set minimizing error and k.



WIP: Sparse Nonneg. Matrix Factorization

- Find both the atoms and the coeficients.
- $\min_{U,V} \|M UV\|_F^2.$
- Solved by alternate optimization of *U* and *V*.
- Optimize U (resp. V) \Leftrightarrow NNLS for each column of U'(resp. V).
- Using arbo. we can do Sparse NMF with

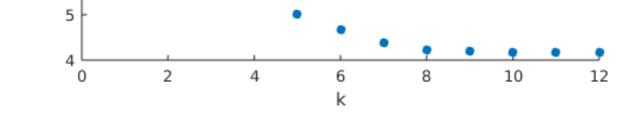
 \bigcirc λ hard to tune, bias introduced, no guarantee.

Greedy heuristics

OMP, OLS ... Select atoms one by one, to maximize decrease of error.
i fast, gives required sparsity.
i no guarantee.

Bruteforce

Enumerate all possible supports, solve the NNLS subproblem for each one, keep the one with lowest error.
i exact resolution.
i too expensive.



Automatic k detection is possible.

Take-home message

- We developed a branch-and-bound algo. for Exact Sparse Nonnegative Least Squares.
- It finds the optimal solution even with ill-conditioned data, and has a good tolerance to noise.
- Quite slower than non-exact methods.

column-wise sparsity constraints.

Code and refs

Nicolas Nadisic, Arnaud Vandaele, Jeremy Cohen, Nicolas Gillis

nicolas.nadisic@umons.ac.be - nicolasnadisic.xyz

Université de Mons, Belgium

