
Exact Sparse Nonnegative Least Squares
A branch-and-bound algorithm for faster and robust exact solving.

Nonnegative Least Squares

Given A ∈ Rm×n and b ∈ Rm, find x∗ ∈ Rn,

x∗ = argmin
x
| |Ax − b| |22 such that x ≥ 0. (1)

I Solution constrained to be entry-wise nonnegative.
I Useful when data point = additive linear combinations of atoms.

Example: hyperspectral imaging

b = M(:, j) A = U x = V (:, j)

Sparsity

What?
I Sparse solution = has only a few nonzero elements.
I Data point b = combination of a few atoms A(:, i).
Why?
I Improves interpretability.
I Used as a constraint, can represent an a priori knowledge and help

reducing noise.
How?
I Nonnegativity naturally produces sparsity, but with no guarantee.
I Need to constrain the objective function.
I A natural measure is the `0-“norm”.
I ‖x‖0 = Card{i : xi , 0} = number of nonzero entries of x.

Problem statement
Sparse Nonnegative Least Squares or Nonnegative Sparse Coding.
Given A ∈ Rm×n, b ∈ Rm and k ∈ N, find x∗ ∈ Rn,

x∗ = argmin
x
‖Ax − b‖22 such that x ≥ 0 and ‖x‖0 ≤ k. (2)

To solve (2) is equivalent to find the best k-support of x.

Issues
I `0-“norm” is nonconvex and nonsmooth, thus hard to enforce.
I The problem is NP-hard and combinatorial.
I

(n
k

)
possible supports.

Example: for n = 4 and k = 2, possible k-sparse supports are
[ 0 0 x3 x4 ] [ 0 x2 0 x4 ] [ 0 x2 x3 0 ] [ x1 0 0 x4 ] [ x1 0 x3 0 ] [ x1 x2 0 0 ].

Existing methods

Relaxation to LASSO
`1-norm penalty→ minx ‖Ax − b‖22 + λ‖x‖1.
, convex, can be solved with coordinate/gradient descent.
/ λ hard to tune, bias introduced, no guarantee.
Greedy heuristics
OMP, OLS . . . Select atoms one by one, to maximize decrease of error.
, fast, gives required sparsity.
/ no guarantee.
Bruteforce
Enumerate all possible supports, solve the NNLS subproblem for each
one, keep the one with lowest error.
, exact resolution.
/ too expensive.

Our branch-and-bound algorithm: arborescent
arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks.

Instead of enumerating all solutions, prune the search space.
Ex, n = 5 k = 2.

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ n = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k′ ≤ 3

X = [x1 0 x3 x4 x5] ... k′ ≤ 4

I One node = parent solution + over-support.
I NNLS subproblems solved with active-set (warm start).
I At root node, sort the entries by ascending order of the entries of the

unconstrained solution.
I Then, explore depth-first and “le�-first”.

Experiments on synthetic datasets
Well-cond A, No-noise b Well-cond A, Noisy b Ill-cond A, No-noise b Ill-cond A, Noisy b
Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 3.41 87.99 40 4.80 85 48 4.83 84.73 4 5.63 79.79 4
CVX 0.23 510.69 95 3.01 509.73 90 2.86 481.34 14 4.11 496.19 12
NNOMP 0.48 2.64 89 3.12 2.74 83 3.09 2.62 3 4.02 2.88 2
NNOLS 0.20 2.36 95 2.93 2.51 92 2.15 2.45 14 3.62 2.59 17
arbo. 0 46.85 100 2.73 1211.1 100 0 30.19 100 2.84 1374.1 80

Results for 100 runs, random data, m = 100, n = 20, k = 10.
Time in ms. Success = recovery of original support of x.

I arborescent finds the optimal solution for most cases, even the dificult
ones, at the cost of a higher computation time.

Hyperspectral unmixing

I Cuprite image: 250 × 191 = 47750
pixels, m = 188 spectral bands,
n = 12 materials, we look for
materials concentrations in pixels.

I Constraint: a pixel is composed of
at most k = 5 materials.

CD L1-CD arbo.
Time (s.) 15.81 22.35 1053
Rel. Error (%) 1.74 4.21 1.78
Sparsity 6.61 4.34 4.77

WIP: Pareto front
As a side-e�ect, arbo. finds the
optimal solution for every sparsity
level k′ ∈ {k, k + 1, . . . , n}.
→ Pareto set minimizing error and k.

Automatic k detection is possible.

Take-home message
I We developed a branch-and-bound algo. for

Exact Sparse Nonnegative Least Squares.
I It finds the optimal solution even with

ill-conditioned data, and has a good
tolerance to noise.

I �ite slower than non-exact methods.

WIP: Sparse Nonneg.
Matrix Factorization

I Find both the atoms and the
coeficients.

I minU ,V ‖M − UV ‖2F .
I Solved by alternate

optimization of U and V .
I Optimize U (resp. V )⇔

NNLS for each column of U ′

(resp. V ).
I Using arbo. we can do

Sparse NMF with
column-wise sparsity
constraints.
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