Exact Sparse Nonnegative Least Squares

A branch-and-bound algorithm for faster and robust exact solving.

Nonnegative Least Squares Our branch-and-bound algorithm: arborescent
leen A c Rm)(n and b c Rm f’lnd x>l< c Rn arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks.
) ; T ’ o . Instead of enumerating all solutions, prune the search space.
X —argm;nH x — b||5 such that x > 0. (1) Ex.n=5k=2.
root node, unconstrained
» Solution constrained to be entry-wise nonnegative. (X = [21 @3 @3 24 5] | K <n=5
» Useful when data point = additive linear combinations of atoms.
[X = [0 x2 x3 24 $5U [X = [x1 0 3 x4 x5]] e k< A4
Example: hyperspectral imaging
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» One node = parent solution + over-support.

» NNLS subproblems solved with active-set (warm start).
=

At root node, sort the entries by ascending order of the entries of the
unconstrained solution.

Then, explore depth-first and “left-first”.
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Experiments on synthetic datasets

Trees Roof tops 2
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400 - zzz | Well-cond A, No-noise b Well-cond A, Noisy b Ill-cond A, No-noise b Ill-cond A, Noisy b
2°°Jh 200 | Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.
% 50 100 10 % 50 100 150 L1-CD | 3.41 87.99 40 4.80 85 48 4.83 84.73 4 5.63 79.79 4
. . CVX 0.23 510.69 95 3.01 509.73 90 2.86 481.34 14 4.11 496.19 12
b — M(,]) A=U X = V(,]) NNOMP 0.48 2.64 89 3.12 2.74 83 3.09 262 3 4.02 2.88 2
NNOLS 0.20 2.36 95 293 251 92 2.15 245 14 3.62 259 17
S . arbo. 0 46.85 100 2.73 1211.1 100 0 30.19 100 2.84 1374.1 80
parS|ty Results for 100 runs, random data, m = 100, n = 20, k = 10.
Time in ms. Success = recovery of original support of x.
What? | JTERE i -
> Sparse solution = has iny a few nonzero elements. » arborescent finds the optlmal solution for most cases, even the dificult
» Data point b = combination of a few atoms A(:, i). ones, at the cost of a higher computation time.
Why?

» Improves interpretability.

Hyperspectral unmixing

» Used as a constraint, can represent an a priori knowledge and help

reducing noise.

How?
Nonnegativity naturally produces sparsity, but with no guarantee.

» Cuprite image: 250 X 191 = 47750
pixels, m = 188 spectral bands,
n = 12 materials, we look for
materials concentrations in pixels.

Need to constrain the objective function.

>
>
» A natural measure is the {;-"'norm”.
> » Constraint: a pixel is composed of

at most kK = 5 materials.

CD L1-CD arbo.
Time (s.) 15.81 22.35 1053
Rel. Error (%) 1.74 4.21 1.78
Sparsity 6.61 4.34 4.77

|x|lo = Card{i: x; # 0} = number of nonzero entries of x.

Problem statement

Sparse Nonnegative Least Squares or Nonnegative Sparse Coding.
Given A €e R™" be R™and k € N, find x* € R",

x* = argmin ||Ax — b||; such that x > 0 and ||x||, < k. (2)
X
To solve (2) is equivalent to find the best k-support of x.
Issues WIP: Pareto front WIP: Sparse Nonneg.
5 . . Matrix F rization
» {y- norm” is nonconvex and nonsmooth, thus hard to enforce. As a side-effect, arbo. finds the at actorizatio
» The problem is NP-hard and combinatorial. optimal solution for every sparsity » Find both the atoms and the
> [Z) possible supports. level K’ € {k, k-lj 1., e nt. co.eficients. 2
Example: for n = 4 and k = 2, possible k-sparse supports are — Pareto set minimizing error and k. » mingyy [|[M - UV:.
[OOX3X4][OXZOX4][OX2X30][X100X4][X10X30][XleOO]. 137 o > Solvedbyalternate
12| optimization of U and V.
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Optimize U (resp. V) &

Existing methods
NNLS for each column of U’
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Reconstr. error

Relaxation to LASSO o (resp. V).

{1-norm penalty — min, ||Ax — b||5 + A[|x||;. d . » Using arbo. we can do
©) convex, can be solved with coordinate/gradient descent. | ' Sparse NMF with

3 A hard to tune, bias introduced, no guarantee. z e e e, column-wise sparsity
Greedy heuristics oot e s R constraints.

OMP, OLS ...Select atoms one by one, to maximize decrease of error.
© fast, gives required sparsity.
@ no guarantee.
Bruteforce
Enumerate all possible supports, solve the NNLS subproblem for each > We developed a branch-and-bound algo. for
: Exact Sparse Nonnegative Least Squares.
one, keep the one with lowest error. , | | |
© . lution » It finds the optimal solution even with
D exact 1eso u ‘ ill-conditioned data, and has a good
too expensive. tolerance to noise.

Automatic k detection is possible.

Code and refs
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Take-home message

» Quite slower than non-exact methods.
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