Matrix-wise ℓ_{0}-constrained Sparse Nonnegative Least Squares

and application to hyperspectral unmixing

Nicolas Nadisic ${ }^{1,2}$
08 April 2024 - LACODAM, Université de Rennes
${ }^{1}$ Ghent University, Belgium
${ }^{2}$ Royal Institute for Cultural Heritage (KIK-IRPA), Belgium

Outline

\author{

1. Introduction
}
2. Column-wise sparse NNLS
3. Matrix-wise sparse NNLS
4. Conclusion

Introduction

With a little help from my friends

Our motivations

High-level motivations:

- Extract underlying structures in data
- Better leverage a priori knowledge, here nonnegativity and sparsity, to improve models
- Develop algorithms that are both globally optimal and computationally tractable

Starting point: linear models

Focus of this work: linear models of the form

$$
B \approx A X,
$$

where

- $B \in \mathbb{R}^{m \times n}$ is the data/input matrix, representing measures or observations,
- $A \in \mathbb{R}^{m \times r}$ is a coeficient matrix, called dictionary, representing features, atoms, or components.
- $X \in \mathbb{R}^{r \times n}$ is a signal or information matrix,
- $r \ll \min (m, n)$

One application - Hyperspectral unmixing

One application - Hyperspectral unmixing

$$
\approx \sum_{p} \underbrace{A(:, p)}_{\begin{array}{c}
\text { spectral signature of } \\
\text { p-th material }
\end{array}}
$$

$$
\underbrace{X(p, j)}
$$

abundance of p -th material in j -th pixel

Linear mixing model

Nonnegativity constraint

- Assumes data is generated from an additive linear combination of features
- Natural in this application
- Produces more interpretable factors

How to find X given B and A ?

Multiple Nonnegative Least Squares (MNNLS) problem

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2}
$$

How to find X given B and A ?

Multiple Nonnegative Least Squares (MNNLS) problem

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2}
$$

Can be divided in n independent NNLS subproblems,

$$
\begin{aligned}
& \min _{x(:, j) \geq 0}\|B(:, j)-A X(:, j)\|_{2}^{2} \\
& \Leftrightarrow \min _{x \geq 0}\|b-A x\|_{2}^{2}
\end{aligned}
$$

Multiple Nonnegative Least Squares (MNNLS)

Given B and A, find $X \geq 0$

Sparsity — Why?

Sparsity of $X \Rightarrow$ Each data point is a combination of only a few features

- Regularize the problem
- Better interpretability
- Natural in many applications \Rightarrow leverage a-priori knowledge to improve the model

B

A

$$
x \geq 0
$$

Sparsity in hyperspectral unmixing

$$
\approx \sum_{p}
$$

Sparsity — How?

The classical way: ℓ_{1} penalty

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2}+\lambda\|X\|_{1}
$$

Advantages:

- Convex, easy to optimize

Issues:

- Restrictive condititions for support recovery
- Parameter λ is hard to tune, no physical meaning

Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the ℓ_{0} - "norm", $\|x\|_{0}=\left|\left\{i: x_{i} \neq 0\right\}\right|$

$$
\min _{X \geq 0}\|B-A X\|_{2}^{2} \text { s.t. }\|X(:, j)\|_{0} \leq k \text { for all } j
$$

Advantage:

- Interpretable: each data point is a combination of at most k features

Column-wise sparse NNLS

Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

$$
\min _{x \geq 0}\|A x-b\|_{2}^{2} \text { s.t. }\|x\|_{0} \leq k
$$

- Reduces to finding the support of x (set of non-zero entries)
- Combinatorial problem, $\binom{r}{k}$ possible supports
- Can be solved approximately by greedy algorithms
- Or optimally with branch-and-bound algorithms

A branch-and-bound algorithm for k-sparse NNLS

Example for $r=5$ and $k=2$

Able to prune large parts of the search space.

Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

- What if the relevant k varies between columns?
- For instance, the number of materials varies between pixels

Bi-objective sparse NNLS

$$
\min _{x \geq 0}\left\{\begin{array}{l}
\|A x-b\|_{2}^{2} \\
\|x\|_{0}
\end{array}\right.
$$

Equivalent to $\min _{x \geq 0}\|b-A x\|_{2}^{2}$ s.t. $\|x\|_{0} \leq k$ for all $k \in\{0, \ldots, r\}$

Bi-objective sparse NNLS

Extension of the branch-and-bound algorithm

Example for $r=5$ and $k=2$

How to leverage this bi-objective formulation on a multicolumn problem?

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2}
$$

Matrix-wise sparse NNLS

Our solution: A matrix-wise ℓ_{0} constraint

Matrix-wise q-sparse MNNLS

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2} \quad \text { s.t. } \quad\|X\|_{0} \leq q
$$

- Can be seen as a global sparsity budget
- If $q=k \times n$, this enforces an average k-sparsity on the columns of X

Our solution: A matrix-wise ℓ_{0} constraint

Matrix-wise q-sparse MNNLS

$$
\min _{X \geq 0}\|B-A X\|_{F}^{2} \quad \text { s.t. } \quad\|X\|_{0} \leq q
$$

- Can be seen as a global sparsity budget
- If $q=k \times n$, this enforces an average k-sparsity on the columns of X

How to solve it?

- With a k-sparse NNLS methods, by vectorizing the problem \Rightarrow leads to a huge NNLS problem, too expensive to solve
- Our contribution: dedicated algorithm

Vectorizing the MNNLS problem is expensive

$$
\min _{H \geq 0}\|M-W H\|_{2}^{2} \text { s.t. }\|H\|_{0} \leq q
$$

\Rightarrow vectorize

$$
\min _{h \geq 0}\|m-\Omega h\|_{2}^{2} \text { s.t. }\|h\|_{0} \leq q
$$

where $\Omega=W \otimes I \in \mathbb{R}^{(m . n) \times(r . n)}$ and $m=\left[\begin{array}{c}M(:, 1) \\ M(:, 2) \\ \vdots \\ M(:, n)\end{array}\right] \in \mathbb{R}^{(m \cdot n)}$

Our contribution: a two-step algorithm

Algorithm Salmon ${ }^{1}$:

1. Generate a set of solutions for every column of X, with different tradeoffs between reconstruction error and sparsity

- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min _{X(: j) \geq 0}\left\{\quad\|B(:, j)-A X(:, j)\|_{2}^{2} \quad, \quad\|X(:, j)\|_{0} \quad\right\}
$$

- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C

[^0]
Our contribution: a two-step algorithm

Algorithm Salmon ${ }^{1}$:

1. Generate a set of solutions for every column of X, with different tradeoffs between reconstruction error and sparsity

- Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

$$
\min _{X(: j) \geq 0}\left\{\quad\|B(:, j)-A X(:, j)\|_{2}^{2} \quad, \quad\|X(:, j)\|_{0} \quad\right\}
$$

- Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
- Build a cost matrix C

2. Select one solution per column such that in total X has q nonzero entries and the error is minimized \Rightarrow assignment-like problem

- Dedicated greedy algorithm proved near-optimal

[^1]
Salmon - Step 1: Build the cost matrix C

- Each row $=$ one sparsity level
- Each column $=$ one column of the MNNLS problem

$$
\begin{gathered}
\left(\begin{array}{cccc}
C_{0,1} & C_{0,2} & \cdots & C_{0, n} \\
C_{1,1} & C_{1,2} & \cdots & C_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r, 1} & C_{r, 2} & \cdots & C_{r, n}
\end{array}\right) \\
C(i, j) \approx \min _{x \geq 0}\|B(:, j)-A x\|_{2}^{2} \text { s.t. }\|x\|_{0} \leq i
\end{gathered}
$$

Salmon - Step 1: Generate Pareto fronts

B

A
X
\square

C

Salmon - Step 1: Generate Pareto fronts

Salmon - Step 1: Generate Pareto fronts

B

A

C

Salmon - Step 2: Select one solution per column

Similar to an assignment problem

$$
\left(\begin{array}{cccc}
C_{0,1} & C_{0,2} & \cdots & C_{0, n} \\
C_{1,1} & C_{1,2} & \cdots & C_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r, 1} & C_{r, 2} & \cdots & C_{r, n}
\end{array}\right)
$$

Let $z_{i, j} \in\{0,1\}$ such that $z_{i, j}=1$ if and only if the j th column of X is i-sparse,

$$
\begin{aligned}
& \min _{z \in\{0,1\}^{r \times n}} \sum_{i, j} z_{i, j} C(i, j) \\
& \text { such that } \sum_{i} z_{i, j}=1 \text { for all } j, \text { and } \sum_{i, j} i z_{i, j} \leq q .
\end{aligned}
$$

Solved with a dedicated greedy algorithm, fast but proved near-optimal

Salmon - Step 2: Greedy selection

Salmon - Step 2: Greedy selection

$\|X\|_{0}=5$
Iterate while $\|X\|_{0}<q$

Salmon - Step 2: Greedy selection

Final solution X, q-sparse matrix

$$
X \approx \arg \min _{X \geq 0}\|B-A X\|_{F}^{2} \quad \text { s.t. } \quad\|X\|_{0} \leq q
$$

Near-optimality of the selection step (step 2)

In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

Near-optimality of the selection step (step 2)

In short:

- The worst case is not too bad (wrong support in at most one column)
- In practice, often optimal (19 out of 22 cases in our exp)

Intuition of the proof:

- The objective function is separable by columns
- At each iteration, we maximize the global decrease in error

Exp: Unmixing of the hyperspectral image Jasper Ridge

Exp: Unmixing of the hyperspectral image Jasper Ridge

More experiments

If you have time, show experiments from the paper

Conclusion

Conclusion

- We introduced a sparse MNNLS model with matrix-wise ℓ_{0}-sparsity constraint
- We developed a two-step algorithm to tackle it
- Makes tractable some problems that are too big for standard NNLS solvers
- Improves results, allows a finer parameter tuning
- Interesting where sparsity varies between columns

Overview of my PhD

Overview smoothed separable NMF

Overview sparse separable NMF

$$
B=B(:, \mathcal{J}) X \quad \text { such that for all } j, \quad\|X(:, j)\|_{0} \leq k
$$

Model-aware deep subspace clustering for hyperspectral images

With Xianlu Li

3D HSI data

clustering map

spectral signatures

t-SNE visualization

Deep subspace clustering augmented with model-based constraints: spatial continuity and structure of the latent space.

Self-supervised learning for locating structures in volume electron microscopy

With Niels Vyncke (unpublished)

Explainable Al for automatic target detection in underwater sonar images

With Nicolas Vercheval, collab with industry (unpublished)

- Unrolled algorithm for target detection
- Post-hoc explainability of deep learning models for target recognition

Deep active learning for crack detection in multimodal images of paintings

With Sebastiaan Verplancke and Niels Vyncke (unpublished)

Thanks!

Contact: nicolas.nadisic@ugent.be
Paper and code:
http://nicolasnadisic.xyz

[^0]: ${ }^{1}$ Salmon Applies ℓ_{0}-constraints Matrix-wise On NNLS problems

[^1]: ${ }^{1}$ Salmon Applies ℓ_{0}-constraints Matrix-wise On NNLS problems

