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Our motivations

High-level motivations:

e Extract underlying structures in data
e Better leverage a priori knowledge, here nonnegativity and sparsity, to improve models

e Develop algorithms that are both globally optimal and computationally tractable
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point: linear models

Focus of this work: linear models of the form

B ~ AX,

where

e B € R™*" is the data/input matrix, representing measures or observations,
e A€ R™*" s a coeficient matrix, called dictionary, representing features, atoms, or
components.

e X € R™" is a signal or information matrix,

e r < min(m,n)
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One application — Hyperspectral unmixing

B(:,))
——

spectral signature of
j-th pixel
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One application — Hyperspectral unmixing

spectral signature of
j-th pixel
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Images from J. Bioucas Dias and N. Gillis.
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Linear mixing model
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Nonnegativity constraint

e Assumes data is generated from an additive linear combination of features
e Natural in this application

e Produces more interpretable factors
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

2 _ 2
oy |18 = Abd
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How to find X given B and A?

Multiple Nonnegative Least Squares (MNNLS) problem

- . 2
oy |18 = Abd

Can be divided in n independent NNLS subproblems,
in [|B(:;,j) — AX(;, /)13
X(rfj})goll () ()3

& min||b — Ax||3
x>0
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Multiple Nonnegative Least Squares (MNNLS)

Given B and A, find X >0

Q
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Sparsity — Why?

Sparsity of X = Each data point is a combination of only a few features

e Regularize the problem
e Better interpretability

e Natural in many applications = leverage a-priori knowledge to improve the model
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Sparsity — How?

The classical way: /1 penalty
min || B — AX||% + \||X ||,
X>0

Advantages:
e Convex, easy to optimize
Issues:

e Restrictive condititions for support recovery

e Parameter )\ is hard to tune, no physical meaning
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Sparsity — How?

More intuitive formulation: column-wise k-sparsity constraint, using the (o-"norm”,
Illo = 47 + x: # 0}
21?8" 12 st [|X(:, )llo < k for all j

Advantage:

e Interpretable: each data point is a combination of at most k features
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Column-wise sparse NNLS




Solving column-wise k-sparse NNLS

Let us focus on the one-column problem for now,

in||Ax — b||? s.t. < k
ity |Ax = b|3 s.t. [Ix]lo <

Reduces to finding the support of x (set of non-zero entries)

e Combinatorial problem, (}) possible supports

Can be solved approximately by greedy algorithms

Or optimally with branch-and-bound algorithms
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A branch-and-bound algorithm for k-sparse NNLS

Example for r =5 and k =2

root node, unconstrained

[ = [z1 22 x3x4z5]jk’§r=5
[z =[0z2 x3 24 :1:5]] [:1: = [z, 0 23 24 xSU Y
[ac =[00x3 24 25]} [3: =[0220 x4 as5]j [ac =022 230 x5U k<3

[ :[0003:4m5U {x:[00m30x5]} [ =[00m3x40Uk’§2:k—>st0p

Able to prune large parts of the search space. 16/42



Limits of column-wise sparse NNLS

Issue of the column-wise constraint:

e What if the relevant k varies between columns?
e For instance, the number of materials varies between pixels
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Bi-objective sparse NNLS

Ax — 2
[ l1Ax - bl

<20 | [xllo

Equivalent to m>i51 |b— Ax||3 s.t. ||x|lo < k for all k € {0,...,r}
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Bi-objective sparse NNLS

Example for r =5

I6]36x =0

a ©
|
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(@)
(@)
X € argmin . [|Ax — b3
0 X
0 1 2 3 4 r=5 Ixllo
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Extension of the branch-and-bound algorithm

Example for r =5 and k =2

root node, unconstrained

[ = [z1 22 x3x4z5]jk’§r=5
[z =[0z2 x3 24 :1:5]] [:1: = [z, 0 23 24 xSU Y
[ac =[00x3 24 25]} [3: =[0220 x4 as5]j [ac =022 230 x5U k<3

[ :[0003:4m5U {x:[00m30x5]} [ =[00m3x40Uk’§2:k—>st0p

Computes the whole Pareto front! 20/42



How to leverage this bi-objective formulation on a multicolumn problem?

2 o 2
i & = A=
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Matrix-wise sparse NNLS




Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
- o D <
in 1B—AX[lz st [X[o<gqg

e Can be seen as a global sparsity budget

e If g = k x n, this enforces an average k-sparsity on the columns of X
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Our solution: A matrix-wise /; constraint

Matrix-wise g-sparse MNNLS
- o D <
in 1B—AX[lz st [X[o<gqg

e Can be seen as a global sparsity budget

e If g = k x n, this enforces an average k-sparsity on the columns of X
How to solve it?

e With a k-sparse NNLS methods, by vectorizing the problem
= leads to a huge NNLS problem, too expensive to solve

e Our contribution: dedicated algorithm
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Vectorizing the MNNLS problem is expensive

in||M— WH|3 st. ||H|o <
E‘Z'%H 2 st [[Hlo<gq

= vectorize
h>|g H H2 st ” HO

where Q = W @ | € R(mm)x(rn) and m =
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Our contribution: a two-step algorithm

Algorithm Salmon!:

1. Generate a set of solutions for every column of X, with different tradeoffs between
reconstruction error and sparsity

e Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems

i {0 1BGA) = AXCIE o IXCAlo )

e Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
e Build a cost matrix C

1Salmon Applies £o-constraints Matrix-wise On NNLS problems
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Our contribution: a two-step algorithm

Algorithm Salmon!:

1. Generate a set of solutions for every column of X, with different tradeoffs between
reconstruction error and sparsity

e Divide the sparse MNNLS problem into n biobjective sparse NNLS subproblems
i B(:,j) — AX(:, )13 X(:Jj
X(rn,jl)nZO{ || ( 7./) ( 7./)”2 ) || ( 7./)“0 }
e Solve with branch-and-bound, or heuristic (homotopy, greedy algo)
e Build a cost matrix C

2. Select one solution per column such that in total X has g nonzero entries and the error is
minimized = assignment-like problem

e Dedicated greedy algorithm proved near-optimal

1Salmon Applies £o-constraints Matrix-wise On NNLS problems
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Salmon — Step 1: Build the cost matrix C

e Each row = one sparsity level

e Each column = one column of the MNNLS problem

Co1 G -+ Gon
CGi1 Ggao -+ G
C.r,l Cr,2 e Cr n

C(i,j) = mineo||B(:,)) — Ax|[3 s.t. |Ixflo < i
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Salmon — Step 1: Generate Pareto fronts

Q
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts
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Salmon — Step 1: Generate Pareto fronts

B A X

Q
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Salmon — Step 1: Generate Pareto fronts

B A X

Q
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Salmon — Step 2: Select one solution per column

Similar to an assignment problem

Co1 G -+ Gon
CGi1 Ggao -+ G
Cr,l Cr,2 e Cr,n

Let z;j € {0,1} such that z j = 1 if and only if the jth column of X is i-sparse,

min "2 ;C(i,))
ij

ze{0,1}rxn

such that Zz,-,j =1 for all j, and Ziz,-yj <gq.
i

iJj
Solved with a dedicated greedy algorithm, fast but proved near-optimal
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Salmon — Step 2: Greedy selection

Sox o ox ox
I
Tw N R o

[Xllo=0
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Salmon — Step 2: Greedy selection

w N = o

Sox o ox ox
I

[ Xllo =1
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Salmon — Step 2: Greedy selection

w N = o

Sox o ox ox
I

[ Xlo =2
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Salmon — Step 2: Greedy selection

w N = o

Sox o ox ox
I

[Xllo =3
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Salmon — Step 2: Greedy selection

> x> x x
I
w N = o
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Salmon — Step 2: Greedy selection

C
X
k=0
k=1
et = : 0 g
[ |
[ X[lo =5

Iterate while || X|lo < g
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Salmon — Step 2: Greedy selection

L

Final solution X, g-sparse matrix

X ~ in[|[B—AX[[z st [X[o<
e | 7 st [Xlo<gq
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Near-optimality of the selection step (step 2)

In short:

e The worst case is not too bad (wrong support in at most one column)

e In practice, often optimal (19 out of 22 cases in our exp)
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Near-optimality of the selection step (step 2)

In short:

e The worst case is not too bad (wrong support in at most one column)

e In practice, often optimal (19 out of 22 cases in our exp)
Intuition of the proof:

e The objective function is separable by columns

e At each iteration, we maximize the global decrease in error
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Exp: Unmixing of the hyperspectral image Jasper Ridge
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Exp: Unmixing of the hyperspectral image Jasper Ridge

19393

NNLS (no sparse) Col-wise, k =2 Salmon, q/n =2 Salmon, q/n =1.8
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More experiments

If you have time, show experiments from the paper
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Conclusion




Conclusion

We introduced a sparse MNNLS model with matrix-wise /p-sparsity constraint

We developed a two-step algorithm to tackle it

Makes tractable some problems that are too big for standard NNLS solvers

e Improves results, allows a finer parameter tuning

Interesting where sparsity varies between columns

34/42



Overview of my PhD

‘ Nonnegative Matrix Factorization ]

min [|B — AX|%

A>0,X>0
/ Sparse MNNLS, estimate X
‘ Separable NMF, estimate A with A fixed
under separability A = B(;, J) min ||[B — AX||Z s.t. X is sparse
X>0

' Chapter 2: Smoothed k 0 Chapter 3: . N
I I | pter 3: I e X B :
1» separable NMF ‘1 : Column-wise sparsity : : Chapte.: 4”)'2/"'3”: wse
””””””””””” ! [ sparsi !
o IXCGlo < kforallj o O i e O
,’/ ,,,\,\é ,,,,,,,,,, 4’,',,,\
,,,,,,,,,,,,, £ Chapter 3:

: Chapter 5: Sparse :
| separable NMF i

. Biobjective sparse NNLS |
| min{|[Ax — bl [xlo} |

35/42



Overview smoothed separable NMF

© Data points B(:, )
Sq [7] Actual endmembers A(:, j)
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Overview sparse separable NMF

B =B(:,J)X such that for all j, [|X(:,))]o < k

o Data points B(:,))
A Exterior vertices
[ Interior vertex
- -~ Unit simplex

0.8

0.6

0.4

0.2
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Model-aware deep subspace clustering for hyperspectra

With Xianlu Li

T I

SRR

mai N :;‘ar\"f‘“\

g RN

o LAY g WS

Spectral Bands

3D HSI data

clustering map spectral signatures

images

t-SNE visualization

Deep subspace clustering augmented with model-based constraints: spatial continuity and

structure of the latent space.
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Self-supervised learning for locating structures in volume electron microscopy

With Niels Vyncke (unpublished)
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Explainable Al for automatic target detection in underwater sonar images

With Nicolas Vercheval, collab with industry (unpublished)

| water column

H |

<«— first bottom return " "

§ <«— trigger pulse.

©
>
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—
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o=
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©
8]
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o

e Unrolled algorithm for target detection

e Post-hoc explainability of deep learning models for target recognition




Deep active learning for crack detection in multimodal images of paintings




Thanks!

Contact: nicolas.nadisic@ugent.be

Paper and code:
http://nicolasnadisic.xyz
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